高中数学教材内容大纲.docx
- 文档编号:5343474
- 上传时间:2022-12-15
- 格式:DOCX
- 页数:20
- 大小:27.11KB
高中数学教材内容大纲.docx
《高中数学教材内容大纲.docx》由会员分享,可在线阅读,更多相关《高中数学教材内容大纲.docx(20页珍藏版)》请在冰豆网上搜索。
高中数学教材内容大纲
(一)体系
教
材
体
系
结
构
必修 数学1 集合、函数概念与基本初等函数1
第1章 集合与函数概念
1.1 集合
1.2 函数及其表示
1.3 函数的基本性质
实习作业
第2章 基本初等函数
(1)
2.1 指数函数
2.2 对数函数
2.3 幂函数
第3章 函数的应用
3.1 函数与方程
3.2 函数模型及其应用
实习作业
必修 数学2 立体几何初步、平面解析几何初步
第1章 空间几何体
1.1 空间几何体的结构
1.2 空间几何体的三视图和直观图
1.3 空间几何体的表面积与体积
实习作业
第2章 点、直线、平面之间的位置关系
2.1 空间点、直线、平面之间的位置关系
2.2 直线、平面平行的判定及其性质
2.3 直线、平面垂直的判定及其性质
第3章 直线与方程
3.1 直线的倾斜角和斜率续表
3.2 直线的方程
3.3 直线的交点坐标与距离公式
第4章 圆与方程
4.1 圆的方程
4.2 直线、圆的位置关系
4.3 空间直角坐标系
必修 数学3 算法初步、统计、概率
第1章 算法初步
1.1 算法与程序框图
1.2 基本算法语句
1.3 算法案例
第2章 统计
2.1 随机抽样
2.2 用样本估计总体
2.3 变量间的相关关系
实习作业
第3章 概率
3.1 随机事件的概率
3.2 古典概型
3.3 几何概型
必修 数学4 三角函数、平面上的向量、三角恒等变换
第1章 三角函数
1.1 任意角和弧度制
1.2 任意角的三角函数
1.3 三角函数的诱导公式
1.4 三角函数的图象与性质
1.5 函数y=Asin(ωx+φ)的图象
1.6 三角函数模型的简单应用
第2章 平面向量
2.1 平面向量的实际背景及基本概念
2.2 平面向量的线性运算
2.3 平面向量的基本定理及坐标表示
2.4 平面向量的数量积
2.5 平面向量应用举例
第3章 三角恒等变换
3.1 两角和与差的正弦、余弦、正切公式
3.2 简单的三角恒等变换
必修 数学5 解三解形、数列、不等式
第1章 解三角形
1.1 正弦定理和余弦定理续表1.2应用举例
实习作业
第2章 数列
2.1 数列的概念与简单表示法
2.2 等差数列
2.3 等差数列的前n项和
2.4 等比数列
2.5 等比数列的前n项和
第3章 不等式
3.1 不等关系与不等式
3.2 一元二次不等式及其解法
3.3 二元一次不等式(组)与简单的线性规划问题
3.4 基本不等式
选修1 第一册 常用逻辑用语、圆锥曲线与方程、导数及其应用
第1章 常用逻辑用语
1.1 命题及其关系
1.2 充分条件和必要条件
1.3 简单的逻辑联结词:
“或”“且”“非”的含义
1.4 全称量词与存在量词
第2章 圆锥曲线与方程
2.1 椭圆与方程
2.2 椭圆的简单性质
2.3 抛物线、双曲线与方程
2.4 圆锥曲线的简单应用
第3章 导数及其应用
3.1 变化率与导数
3.2 导数的计算
3.3 导数在研究函数中的应用
3.4 生活中的优化问题举例
实习作业
选修1 第二册 统计案例、推理与证明、数系的扩充与复数的引入、框图
第1章 统计案例
1.1 案例1:
独立性检验(2×2列联表)
1.2 案例2:
假设检验
1.3 案例3:
聚类分析
1.4 案例4:
回归分析
第2章 推理与证明
2.1 合情推理
2.2 演绎推理
2.3 分析法和综合法续表
2.4 反证法
2.5 公理化思想与机器证明
第3章 数系的扩充与复数的引入
3.1 数系的扩充
3.2 复数的基本概念
3.3 复数的代数表示及其几何意义
3.4 复数的四则运算
第4章 框图
4.1 流程图
4.2 结构图
选修2 第一册 常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何
第1章 常用逻辑用语
1.1 命题及其关系
1.2 充分条件和必要条件
1.3 简单的逻辑联结词:
“或”“且”“非”的含义
1.4 全称量词与存在量词
第2章 圆锥曲线与方程
2.1 椭圆及其标准方程
2.2 椭圆的简单性质
2.3 抛物线及其标准方程
2.4 抛物线的简单性质
2.5 双曲线的标准方程和简单性质
2.6 圆锥曲线的简单应用
2.7 曲线与方程
第3章 空间向量与立体几何
3.1 从平面到空间──空间向量及其运算
3.2 立体几何中的向量方法
选修2 第二册 导数及其应用、推理与证明、数系的扩充与复数的引入
第1章 导数及其应用
1.1 变化率与导数
1.2 几种常见函数的导数
1.3 导数的运算
1.4 导数在研究函数中的应用
1.5 生活中的优化问题举例
1.6 定积分的概念
1.7 微积分基本定理
实习作业
第2章 推理与证明
2.1 合情推理
2.2 演绎推理
2.3 分析法和综合法续表2.4反证法
2.5 数学归纳法
2.6 公理化思想与机器证明
第3章 数系的扩充与复数的引入
3.1 数系的扩充
3.2 复数的基本概念
3.3 复数的代数表示及其几何意义
3.4 复数的四则运算
选修2 第三册 计数原理、统计案例、概率
第1章 计数原理
1.1 分类计数原理和分步计数原理
1.2 排列
1.3 组合
1.4 二项式定理
第2章 统计与概率
2.1 离散型随机变量及其分布列
2.2 条件概率和事件的独立性
2.3 离散型随机变量的均值与方差
2.4 正态分布
2.5 统计案例
选修3 第一册 《数学史选讲》
第一讲 早期算术与几何──计数与测量
一、纸草书中记录的数学(古代埃及)
二、泥板书中记录的数学(两河流域)
三、中国《周髀算经》、勾股定理(赵爽的图)
四、十进位值制的发展
第二讲 古希腊数学
一、毕达哥拉斯多边形数,从勾股定理到勾股数,不可公度问题
二、欧几里得与《原本》
三、阿基米德的工作:
求积法
第三讲 中国古代数学瑰宝
一、《九章算术》中的数学(方程术、加减消元、正负数)
二、大衍求一术(孙子定理)
三、中国古代数学家介绍
第四讲 平面解析几何的产生──数与形的结合
一、函数与曲线
二、笛卡儿方法论的意义
第五讲 微积分的产生──划时代的成就
第六讲 近代数学两巨星──欧拉与高斯
一、欧拉的数学直觉
二、高斯时代的特点(数学严密化)续表
第七讲 千古谜题──伽罗瓦的解答
一、从阿贝尔到伽罗瓦(一个中学生数学家)
二、几何作图三大难题
三、近世代数的产生
第八讲 康托的集合论──对无限的思考
一、无限集合与势
二、罗素悖论与数学基础(哥德尔不完备定理)
第九讲 随机思想的发展
一、概率论溯源
二、近代统计学的缘起
第十讲 算法思想的历程
一、算法的历史背景
二、计算机科学中的算法
第十一讲 中国现代数学的发展
现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程
学习总结报告
选修3 第二册 《信息安全与密码》
第一讲 初等数论的有关知识
一、整除和同余;模m的完全同余系和简化剩余系;欧拉定理和费马小定理;大数分解问题
二、欧拉函数的定义和计算公式;威尔逊定理及在素数判别中的应用;原根与指数;模p的原根存在性;离散对数问题
第二讲 数论在信息安全中的应用
一、通讯完全中的有关概念;通讯安全中的基本问题
二、古典密码的一个例子:
流密码(利用模m同余方式)
三、公钥体制;加密和数学签名的方法
四、离散对数在密钥交换和分配中的应用
五、离散对数在加密和数字签名中的应用
六、拉格朗日插值公式在密钥共享中的应用
学习总结报告
选修3 第三册 《球面上的几何》
第一讲 “球面上的几何”概述
一、现实中的球面几何(如测量、航空、卫星定位)问题
二、球面图形与平面图形
三、球面的对称性质
四、球面上的基本图形
第二讲 球面三角形的性质
一、欧氏平面图形的性质在球面上的推广(球面三角形的全等定理s.s.s,s.a.s,a.s.a)
二、球面三角形全等的a.a.a定理
三、单位球面三角形的面积公式(S=A+B+C-π)
四、球面三角形的内角和
五、欧拉公式的证明
第三讲 球面三角公式
一、球面余弦定理(cosc=cosacosb+sinasinbcosC)
二、球面上的勾股定理(即当C=π/2时的球面余弦定理)
三、球面的正弦定理(
)
四、球面的三角公式与平面三角公式
第四讲 庞加莱模型
学习总结报告
选修3 第四册 《对称与群》
引言
第一讲 平面图形的对称群
一、平面刚体运动
二、对称变换
三、平面图形的对称群
第二讲 代数学中的对称与抽象群的概念
一、n元对称群Sn
二、多项式的对称变换
三、抽象群的概念
第三讲 对称与群的故事
一、带饰和面饰
二、化学分子的对称群
三、晶体的分类
四、伽罗瓦理论
学习总结报告
选修3 第五册 《欧拉公式与闭曲面分类》
第一讲 欧拉公式
一、用变换对平面图形分类
二、欧拉公式
第二讲 闭曲面分类
一、曲面的三角剖分
二、曲面的欧拉示性数
三、拓扑变换的直观含义
四、拓扑不变量和曲线、闭曲面分类
五、拓扑思想的应用
学习总结报告
选修3 第六册 《三等分角与数域扩充》
第一讲 三等分角问题与尺规作图
一、古希腊三大几何作图问题
二、解决三等分角问题的基本思路
三、尺规作长为有理数的线段
四、用尺规作长为
的线段
第二讲 数域和数域的扩充
一、有理数域和一般数域
二、数域扩充及实例
第三讲 三等分角问题的讨论
一、三等分角问题的代数化
二、证明:
不能用尺规作图的方法三等分六十度角
三、几何问题代数化方法的应用
四、复数乘法的棣莫弗公式
五、用尺规作图方法作正十七边形
学习总结报告
选修4 第一册 《几何证明选讲》
第一讲 圆与直线关系的有关定理
一、相似图形的性质
二、圆与直线关系的有关定理
第二讲 圆锥曲线性质的探究
一、平行投影的含义
二、平面与圆锥面的交线及相关证明
三、Dandelin双球与椭圆
学习总结报告
选修4 第二册 《矩阵与变换》
第一讲 二阶矩阵与变换
一、二阶矩阵
二、二阶矩阵与平面向量的乘法、平面图形的变换
三、变换的复合──二阶方阵的乘法
四、逆矩阵与二阶行列式
第二讲 矩阵的应用
一、二阶矩阵与二元一次方程组
二、变换的不变量
三、矩阵的应用
学习总结报告
选修4 第三册 《数列与差分》
第一讲 数列的差分
一、数列差分的概念
二、数列的一阶差分
三、数列的二阶差分
四、差分与数列的有关性质
第二讲 线性差分方程(组)
一、线性差分方程
二、一阶线性差分方程组
第三讲 非线性问题举例
一、方程xn+1=kxn(1-xn)
二、非线性问题复杂性举例
学习总结报告
选修4 第四册 《坐标系与参数方程》
第一讲 坐标系
一、平面直角坐标系伸缩变换下的平面图形变化
二、极坐标系
三、极坐标系中简单图形的方程
四、柱坐标系、球坐标系简介
第二讲 参数方程
一、抛物运动轨迹的参数方程
二、直线、圆和圆锥曲线的参数方程
三、参数方程与普通方程的比较
四、平摆线和渐开线的参数方程
五、阅读材料:
摆线的生成过程及应用举例
学习总结报告
选修4 第五册 《不等式选讲》
第一讲 不等式与绝对值不等式
一、不等式
二、绝对值不等式
三、绝对值不等式的求解
第二讲 柯西不等式
一、柯西不等式的几种不同形式及其几何意义
二、柯西不等式的证明
三、柯西不等式一般情况的讨论
四、柯西不等式的应用
五、排序不等式
第三讲 数学归纳法
一、数学归纳法原理
二、数学归纳法的简单应用举例
三、贝努利不等式及其简单应用
第四讲 不等式证明方法举例
一、比较法
二、综合法
三、分析法
四、反证法
五、放缩法
学习总结报告
选修4 第六册 《初等数论初步》
第一讲 整数和整除
一、同余和剩余类
二、整除
三、整数的整除判别法
第二讲 辗转相除法
一、两个整数的最大公约数
二、一次不定方程及其求解
三、一次同余方程组模型
第三讲 初等数论中的几个重要定理
一、大衍求一术和孙子定理
二、费马小定理
三、欧拉定理
四、数论在密码中的应用──公开密钥
学习总结报告
选修4 第七册 《优选法与试验设计初步》
第一讲 优选法初步
一、现实生活中的优选问题
二、分数法、0.618法及其应用
三、斐波那契数列与黄金分割
四、对分法、爬山法、分批试验法
五、目标函数为多峰情况下的处理方法
六、双因素、多因素的优选问题
第二讲 试验设计初步
一、现实生活中的试验设计问题
二、正交试验设计方法
三、正交试验设计的简单应用
学习总结报告
选修4 第八册 《统筹法及图论初步》
第一讲 统筹方法
一、统筹问题的思想及其应用举例
二、统筹法中的基本概念
三、统筹图的绘制
四、统筹图中的参数计算
五、统筹图的关键路及其算法
六、统筹方法的简单应用
第二讲 图论初步
一、图的基本概念和作用
二、图的生成树及相关的算法
三、图的最短路问题及其算法续表四、图论的其他问题和算法的复杂性
学习总结报告
选修4 第九册 《风险与决策》
第一讲 日常生活及经济活动中的风险决策
第二讲 损益函数与损益矩阵;决策途径与方法的探索;决策结论的意义
第三讲 决策树;用反推决策树的方法进行决策
第四讲 风险决策灵敏度分析
第五讲 马尔可夫型决策及其决策方法
学习总结报告
选修4 第十册 《开关电路与布尔代数》
第一讲 开关电路简介
一、开关电路的两种状态及其构成
二、两个电路的并联和串联电路,逆反电路,以及它们的状态的确定
三、开关电路设计的基本问题,以及一个具体电路设计问题
第二讲 从开关电路到布尔代数
一、以开关电路为背景的布尔代数
二、布尔代数中运算所满足的运算律(与算术对比)
三、布尔多项式及其标准型(与代数对比)
四、开关电路与不耳朵相似的相互转化
五、布尔函数及关于布尔函数的基本定理
六、第一讲三中问题的解决
第三讲 布尔代数在计算机的电路设计中的作用
第四讲 布尔代数与命题演算
一、简单命题和复合命题的结构:
联结词“或”“且”“非”的意义
二、由命题演算引入布尔代数
三、布尔代数是性质完全不同的两类事物的共同抽象
第五讲 回顾与总结
一、布尔代数,布尔多项式与布尔函数在开关电路上和在命题演算中的意义
二、布尔代数、布尔多项式、布尔函数与数系上的算术、代数、函数的比较
三、布尔代数的历史
学习总结报告
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 教材内容 大纲