三角函数公式全集合.docx
- 文档编号:5307376
- 上传时间:2022-12-15
- 格式:DOCX
- 页数:16
- 大小:62.12KB
三角函数公式全集合.docx
《三角函数公式全集合.docx》由会员分享,可在线阅读,更多相关《三角函数公式全集合.docx(16页珍藏版)》请在冰豆网上搜索。
三角函数公式全集合
三角函数
1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π/2-a)=cos(a)
cos(π/2-a)=sin(a)
sin(π/2+a)=cos(a)
cos(π/2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)tan(b)]
tan(a-b)=[tan(a)-tan(b)]/[1+tan(a)tan(b)]
3.和差化积公式
sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b)=2sin[(a-b)/2]cos[(a+b)/2]
cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]
4.积化和差公式
sin(a)sin(b)=-1/2[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2[sin(a+b)+sin(a-b)]
5.二倍角公式
sin(2a)=2sin(a)cos(a)
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
6.半角公式
sin2a=(1–cos2a)/2
cos2a=(1+cos2a)/2
tana=[1–cos2a]/sin2a=sin2a/[1+cos2a]
7.万能公式
sin(a)=2tan(a/2)/[1+tan2(a/2)]
cos(a)=[1-tan2(a/2)]/[1+tan2(a/2)]
tan(a)=2tan(a/2)/[1-tan2(a/2)]
三角函数公式
三角函数是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的。
其定义城为整个实数城。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷敖列的极限和微分方程的解,将其定义扩展到复数系。
公式分类同角三角函数的基本关系平常针对不同条件的常用的两个公式一个特殊公式坡度公式锐角三角函数公式二倍角公式
三倍角公式三倍角公式半角公式万能公式
其他四倍角公式五倍角公式
六倍角公式七倍角公式
八倍角公式九倍角公式十倍角公式
N倍角公式半角公式两角和公式
三角和公式和差化积
积化和差双曲函数三角函数的诱导公式(六公式)
万能公式其它公式
容规律公式分类同角三角函数的基本关系平常针对不同条件的常用的两个公式
一个特殊公式坡度公式
锐角三角函数公式二倍角公式
三倍角公式三倍角公式半角公式
万能公式其他
四倍角公式五倍角公式六倍角公式七倍角公式八倍角公式九倍角公式十倍角公式N倍角公式半角公式两角和公式三角和公式和差化积积化和差
双曲函数三角函数的诱导公式(六公式)
万能公式其它公式容规律
展开
编辑本段公式分类
同角三角函数的基本关系
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
平方关系:
平常针对不同条件的常用的两个公式
一个特殊公式
(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)
证明:
(sina+sinθ)*(sina-sinθ)=2sin[(θ+a)/2]cos[(a-θ)/2]*2cos[(θ+a)/2]sin[(a-θ)/2]
=sin(a+θ)*sin(a-θ)
坡度公式
我们通常把坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,
即i=h/l,坡度的一般形式写成l:
m形式,如i=1:
5.如果把坡面与水平面的夹角记作
a(叫做坡角),那么i=h/l=tana.
锐角三角函数公式
正弦:
sinα=∠α的对边/∠α的斜边
余弦:
cosα=∠α的邻边/∠α的斜边
正切:
tanα=∠α的对边/∠α的邻边
余切:
cotα=∠α的邻边/∠α的对边
二倍角公式
正弦
sin2A=2sinA·cosA
余弦
正切
tan2A=(2tanA)/(1-tan^2(A))
三倍角公式
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
三倍角公式推导
sin(3a)
=sin(a+2a)
=sin2acosa+cos2asina
=2sina(1-sina)+(1-2sina)sina
=3sina-4sin^3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cosa-1)cosa-2(1-cos^a)cosa
=4cos^3a-3cosa
sin3a=3sina-4sin^3a
=4sina(3/4-sina)
=4sina[(√3/2)-sina]
=4sina(sin60°-sina)
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos^3a-3cosa
=4cosa(cosa-3/4)
=4cosa[cosa-(√3/2)^2]
=4cosa(cosa-cos30°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
现列出公式如下:
sin2α=2sinαcosαtan2α=2tanα/(1-tanα)cos2α=cosα-sinα=2cosα-1=1-2sinα
可别轻视这些字符,它们在数学学习中会起到重要作用,包括在一些图像问题和函数问题中
三倍角公式
sin3α=3sinα-4sinα=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα-3cosα=4cosα·cos(π/3+α)cos(π/3-α)tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tana·tan(π/3+a)·tan(π/3-a)
半角公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
万能公式
sinα=2tan(α/2)/[1+tan(α/2)]
cosα=[1-tan(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan&s(α/2)]
其他
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
四倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式
sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角公式
sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))
cos6A=((-1+2*cosA)*(16*cosA^4-16*cosA^2+1))
tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)
七倍角公式
sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))
cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))
tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角公式
sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)
九倍角公式
sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+*tanA^4-84*tanA^6+9*tanA^8)
十倍角公式
sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))
cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))
tan10A=-2*tanA*(5-60*tanA^2+*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)
N倍角公式
根据棣美弗定理,(cosθ+isinθ)^n=cos(nθ)+isin(nθ)
为方便描述,令sinθ=s,cosθ=c
考虑n为正整数的情形:
cos(nθ)+isin(nθ)=(c+is)^n=C(n,0)*c^n+C(n,2)*c^(n-2)*(is)^2+C(n,4)*c^(n-4)*(is)^4+...…+C(n,1)*c^(n-1)*(is)^1+C(n,3)*c^(n-3)*(is)^3+C(n,5)*c^(n-5)*(is)^5+...…=>比较两边的实部与虚部
实部:
cos(nθ)=C(n,0)*c^n+C(n,2)*c^(n-2)*(is)^2+C(n,4)*c^(n-4)*(is)^4+...…i*
(虚部):
i*sin(nθ)=C(n,1)*c^(n-1)*(is)^1+C(n,3)*c^(n-3)*(is)^3+C(n,5)*c^(n-5)*(is)^5+...…
对所有的自然数n:
1.cos(nθ):
公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。
2.sin(nθ):
(1)当n是奇数时:
公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示。
(2)当n是偶数时:
公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是cosθ)的一次方无法消掉。
(例.c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
半角公式
两角和公式
两角和公式
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
三角和公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
和差化积
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
和差化积公式
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
积化和差
sinαsinβ=-[cos(α+β)-cos(α-β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
双曲函数
sha=[e^a-e^(-a)]/2
cha=[e^a+e^(-a)]/2
tha=sinh(a)/cosh(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
A·sin(ωt+θ)+B·sin(ωt+φ)=
√{(A+2ABcos(θ-φ)}·sin{ωt+arcsin[(A·sinθ+B·sinφ)/√{A^2+B^2+2ABcos(θ-φ)}}
√表示根号,包括{……}中的容
三角函数的诱导公式(六公式)
公式一:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
公式二:
sin(π/2-α)=cosα
cos(π/2-α)=sinα
公式三:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
公式四:
sin(π-α)=sinα
cos(π-α)=-cosα
公式五:
sin(π+α)=-sinα
cos(π+α)=-cosα
公式六:
tanA=sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
诱导公式记背诀窍:
奇变偶不变,符号看象限
万能公式
万能公式
sinα=2tan(α/2)/[1+(tan(α/2))]
cosα=[1-(tan(α/2))]/[1+(tan(α/2)]
tanα=2tan(α/2)/[1-(tan(α/2))]
其它公式
三角函数其它公式
(1)(sinα)^2+(cosα)^2=1(平方和公式)
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
其他非重点三角函数
csc(a)=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 公式 全集