小学奥数练习.docx
- 文档编号:5280155
- 上传时间:2022-12-14
- 格式:DOCX
- 页数:60
- 大小:1.37MB
小学奥数练习.docx
《小学奥数练习.docx》由会员分享,可在线阅读,更多相关《小学奥数练习.docx(60页珍藏版)》请在冰豆网上搜索。
小学奥数练习
2007小学奥数练习:
数学竞赛模拟题及答案
(一)
一、填空题:
1.13×99+135×999+1357×9999=______.
2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.
3.12345678987654321除本身之外的最大约数是______.
4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取
5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字
组成,那么小正方形的面积是______,大正方形的面积是______.
6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘
米,平行四边形ABCD的面积是_______平方厘米.
7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.
从前8个车站上车且在终点站下车的共有______人.
9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.
10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.
二、解答题:
2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?
3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?
4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:
每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.
以下答案为网友提供,仅供参考:
一、填空题:
1.13704795
原式=1300-13+135000-135+13570000
-1357
=13706300-1505
=13704795
2.18
因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.
3.4115226329218107
因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为
12345678987654321÷3
=4115226329218107
174×3+4=526(千克)
因此两桶油共重
526+(526-174)=878(千克)
5.273,546
根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:
273×2=546,所以小正方形面积为273,大正方形的面积为546.
6.19.2
7.17
因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有
93-76=17(人)
8.153
因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.
9.2400
750+150x-150=200x
50x=600
x=12
所以电视机的价格是
根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.
汽车到达乙站,休息10分后,行人又走了
2×(2000÷10+60×10)=1600(米)
汽车追上行人共需时间
2000÷10+60×10+(2000+1600)÷(10-2)
=1250(秒)
=20分5秒
9点40分+20分5秒=10点05秒.
二、解答题:
1.1
2.7.68元
根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有
2.56×(12÷4)=7.68(元)
正常钟表的时针和分针重合一次需要
不准确的钟表走8小时,实际上是走
应得工资为
=32+2.6
=34.6(元)
4.8分
从周做5题得9分可以看出,周做对了4道题,下面分别讨论:
(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.
(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.
(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.
(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.
(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.
所以只有(4)满足条件.
2007小学奥数练习:
数学竞赛模拟试题及及答案
(二)
一、填空题:
2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知
人数不超过60人,则该班不及格的学生有______人.
3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.
4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.
5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.
6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.
7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.
8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.
9.分子小于6,而分母小于60的不可约真分数有______个.
10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.
二、解答题:
2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:
(1)分子和分母各加一个相同的一位数;
(2)分子和分母各减一个相同的一位数.
子.
3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:
0,1,3,8,…,问最右边那个数除以6余几?
4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?
以下答案为网友提供,仅供参考:
一、填空题:
1.4
2.1
根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为
3.7
后三个数的和为
11+(7×6-8×4)=21
所以后三个数的平均数为7.
4.4
可将原题转化为数字谜问题:
其中A、B可以取相同的数字,也可以取不同的数字.
显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.
两位数分别是15、25、35、45.
5.44
从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是
350÷10+9=44
根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.
所以4头牛、15只羊吃7天相当于
3.5×4+15=29(只)
羊吃7天,6头牛、7只羊相当于
3.5×6+7=28(只)羊,可以吃
7.6
长度为199厘米的铁丝最少截1根,最多截9根,列表计算.
8.15
平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.
因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE
因此S阴=S△BEC-S△HBC+S四边形EFHG
=24-12+3
=15(平方厘米)
9.197
以分子为1、2、3、4、5分类计算.
(1)分子是1的分数有58个;
(2)分子是2的分数有29个;
(3)分子是3的分数有38个;
(4)分子是4的分数有28个;
(5)分子是5的分数有44个.
共有58+29+38+28+44=197(个)
10.8
设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程
(a-b)×10=(a-3b)×20
即a-b=(a-3b)×2
整理后有a=5b
这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.
二、解答题:
1.8
2.487
因为901=13×69+4,所以可分两种情况讨论:
(1)分母加9后是13的倍数,此时分子为
7×(69+1)-9=481
但481=13×37不是质数,舍.
(2)分母减4后是13的倍数,此时分子为
7×69+4=487
由于487是质数,所以487为所求.
3.3
设相邻的三个数为an-1,an,an+1.根据题设有3an=an-1+an+1,所以an+1=3an-an-1.
设an=6q1+r1,an-1=6q2+r2.则
an+1=3×(6q1+r1)-6q2+42
=6(3q1-q2)+(3r1-r2)
由此可知,an+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:
0,1,3,2,3,1,0,5,3,4,3,5,0,
可以发现,12个数为一个循环,所以
1997÷12=166…5
由此可知第 1997个数除以 6余 3.
4.5根
设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为
(54-24)÷(18-3)=2(份)
蓄水池原有水最为
24-2×3=18(份)
要想在8小时放光水,应打开水管
18÷8+2=4.25(根)
所以至少应打开5根排水管.
2007小学奥数练习:
数学竞赛模拟试题及答案(三)
一、填空题:
2.以正方形的4个顶点和正方形的中心(共5个点)为顶点,可以套出______种面积不等的三角形.
3.某校组织不到200名同学外出参观,集合时,他们排成了一个正方形的队伍,乘车时,由于每人都要有座位,因此需要每辆有60个座位的大轿车至少4辆.那么参加活动的共有______人.
4.服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装.现有66名工人生产,每天最多能生产______套.
6.一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是______千米.
7.55道数学题,分给甲、乙、丙三人计算。
已知乙分到的题比甲多1倍,丙分到的题最少,却是个两位数,且个位不是0.甲分到______道题,乙分到______道题,丙分到______道题.
8.如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是______.
数超过了试题总数的一半,则他们都答对的题有______道.
10.有一水果店一天之中共进了6筐水果,分别装着香蕉和桔子,重量分别为8、9、16、20、22、27千克.当天只卖出了一筐桔子.在剩下的五筐水果中香蕉的重量是桔子重量的2倍,那么当天共进了______筐香蕉.
二、解答题:
1.甲、乙、丙、丁四人共同购买一只价值4200元的游艇,甲支付的现
的现金是多少元?
2.如图,九个小长方形组成一个大长方形,按图中编号,则1号长方形的面积恰好是1平方厘米,2号恰好是2平方厘米,3号恰好是3平方厘米,4号恰好是4平方厘米,5号恰好是5平方厘米,6号的面积是多少平方厘米?
3.某人连续打工24天,挣了190元。
星期一到星期五全天工作,日工资10元;星期六半天工作,发半资5元;星期日不工作,无工资.已知他打工是从3月下旬的某一天开始的,这个月的1日是星期日,那么他打工结束的那一天是4月几日?
4.有甲、乙、丙三组工人,甲组4人的工作,乙组需5人完成;乙组3人的工作,丙组需8人完成.一项工作,需甲组13人、乙组15人合作3天完成.如果让丙组10人去做,需要多少天完成?
以下答案为网友提供,仅供参考:
一、填空题:
1.100
2.2
如果三个顶点全取正方形顶点,则无论怎样套,三角形面积都是正方形面积的一半;
如果一个顶点取在正方形的中心,则无论怎样套,三角形的面积都是正
所以面积不同的三角形共有2种.
3.196
根据题设可知,参观人数应在(60×3+1=)181人到200人之间.又因为人数是一个平方数,且181至200之间只有196是平方数,所以196为所求.
4.168
根据题设可知,生产上衣与生产裤子的工人人数之比为7∶4,所以生产上衣的人数为:
66÷(7+4)×7=42(人)
共生产服装
4×42=168(套)
5.a=8,b=0,c=6
1+3+a+b+4+5+6是9的倍数,即19+a+b是9的倍数,由此推出 a+b=8或a+b=17.当a+b=17时,只有8+9=17,而1389456、1398456均不被11整除,舍去.
又(1+a+4+6)-(3+b+5)是11的倍数,即3+a-b是11的倍数,由此推出a-b=8或b-a=3.
因为a+b与a-b是同奇、同偶,所以只有a+b=8与 a-b=8有解,此时a=8,b=0.
6.630
因为两车在相距中点10千米处相遇,所以客车比货车多行(10×2=)20千米.又因为货车先开出(60÷60×5=)5千米,因此在相同的时间内客车比货车多行(20+5=) 25千米.甲、乙两地相距
(65+60)×25÷(65-60)+5
=630(千米)
7.14,28,13
根据题设可知,甲、乙分到的题数之和是3的倍数,将55拆分,可得到符合条件的分法:
55=14×3+13
所以甲分得14道题,乙分得(14×2=)28道题,丙分得13道题.
8.40
解方程,有:
x=10
所以S△ADG=10×(1+3)=40.
9.17
根据题设可知,题目总数是4、6的公倍数.
9+7-(12-2)=6(道)
没有超过总题数的一半,不合题意.
18+19-(24-4)=17(道)
超过总题数的一半,符合题意.
若共有36题,则两人都答错的有
当总数大于36时,均不合题意.
10.3
根据题意可知,剩下的五筐水果总重量是3的倍数.
8+9+16+20+22+27=102(千克)是3的倍数,故卖掉的一筐重量也是3的倍数.
若卖掉9千克的一筐,则桔子重量为
(102-9)÷3=31(千克)
但在剩下的五个数中没有几个数的和是31,不合题意.
所以只能卖掉27千克的一筐,此时桔子重量为
(102-27)÷3=25(千克)
根据条件可知,9千克、16千克重的是桔子,剩下的是香蕉,所以当天共进了3筐香蕉.
二、解答题:
1.910
丁应支付现金
2.7.5
为叙述方便,给长方形标上字母,如图所示.
根据条件可知:
AB×FG=1, AB×EF=2,CD×FG=3,BC×EF=4,BC×DE=5,所以
CD×DE
3.18日
这个人每星期挣(10×5+5=)55元,根据55×3+25=190(元)和7×3+3=24(天)可知,他干了三个星期零三天,且在多干的三天中挣了25元.
根据条件可知,多的三天中有两个上全工日,一个半工日,因此他打工的第一天是星期四.
由于这个月的1日是星期日,因此星期四分别为5日、12日、19日和26日.由于从三月下旬开始打工,所以打工的第一天是3月26日.
因为31-26+1+18=24,所以打工的最后一天是4月18日.
4.25天
这项工作的总工作量为
丙组10人需干
2007小学奥数练习:
数学竞赛模拟试题及答案(五)
一、填空题:
2.有20个约数的最小自然数是______.
3.如图,AB=6厘米,BC=2厘米,ABCD是长方形,则阴影部分的面积是______平方厘米.
4.把1,2,7,8,9,10,12,13,14,15填入图中的小圆内,使每个大圆圈上的六个数的和是60.
6.体操选手的选拔赛上,每名裁判员给选手的最高分不超过10分.某位选手的得分情况如下:
全体裁判员给的分数的平均分是9.72分,如果去掉一个最低分,则其余裁判员给的分数的平均数是9.76分,如果去掉一个最高分,则其余裁判给的分数的平均数是9.68分.那么所有裁判员给的分数中最低分至少是______分,共有______名裁判员.
7.一个自然数,各个数位上的数字之和是1997,则这个自然数最小是______.
8.甲、乙、丙、丁四个学生共有80张卡片,甲给乙10张,乙给丙12张,丙给丁7张,丁给甲4张,这时四人手里的卡片数相等,则甲、乙、丙、丁原有卡片分别是______张.
个可约分数,□内的数最大是______.
10.在8张小圆纸片上面分别写上2,5,8,11,14,17,20,23这8个数,把其中的四张分别放在一个大正方形的四个角上,再把余下的四张分别放在该正方形的四条边上,使得正方形每条边上的三个小圆纸片的数字之和都相等,那么这四个角上的四个数和最大是______.
二、解答题:
1.一艘轮船第一次顺流航行36千米,逆流航行12千米,共用12小时;第二次用同样的时间,顺流航行了12千米,逆流航行了20千米.
求这艘轮船的静水速度及水流速度.
2.有甲、乙、丙三个人同时同向从同地出发,沿着周长为900米的环行跑道跑步,甲每分钟360米,乙每分钟300米,丙每分钟210米,问他们至少各绕了多少圈后才能再次相遇?
3.分母为1992的所有最简分数之和是多少?
4.如图,一块半径为1厘米的圆板,从平面1的位置沿AB、BC、CD滚动到位置2.如果AB=BC=CD=10厘米,那么圆板滚过的面积是多少平方厘米?
(π取3,保留小数点后面2位数字)
以下答案为网友提供,仅供参考:
一、填空题:
2.240
因为20=1×20=2×10=2×2×5=4×5,由于所求自然数最小,有20个约数的自然数可能是:
219,29×3,24×3×5,24×33
显然最小的是24×3×5=240.
3.19.4
4.如图
要使每个大圆圈上的六个数的和等于60,两个圆圈上的各数之和应为120,但已知给的10个数之和是91,120-91=29,29是两个大圆圈上公共的两个数之和,只有14+15=29,把这两个数添入大圆圈上公共小圆圈内,再把其它8个数分成和是31的两组.
5.六
因为一星期有7天,而7整除199********7,1997÷3=665…2,说明还余下2个1997,由于
19971997÷7=2853142…3,3+3=6.
所以1997年元旦后再过1997个1997天是星期六。
6.最低分至少9.44分,有8名裁判员.
设有x名裁判员,最高分是a,最低分是b,则
9.72x=9.76(x-1)+b
9.72x=9.68(x-1)+a
即b=9.76-0.04x
a=0.04x+9. 68
所以a+b=9.76+9.68=19.44
由于a≤10,则b≥9.44,故最低分至少是9.44分.
由9.44=9.76-0.04x
x=8
要使这个自然数最小,则这个自然数的位数要尽可能少,这就要求各位数位上的数字尽可能大,最大取9.
1997÷9=221
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 练习