第三章13可线性化的回归分析.docx
- 文档编号:5175394
- 上传时间:2022-12-13
- 格式:DOCX
- 页数:19
- 大小:159.52KB
第三章13可线性化的回归分析.docx
《第三章13可线性化的回归分析.docx》由会员分享,可在线阅读,更多相关《第三章13可线性化的回归分析.docx(19页珍藏版)》请在冰豆网上搜索。
第三章13可线性化的回归分析
可线性化的回归分析
[学习目标]
1.进一步体会回归分析的基本思想.
2.通过非线性回归分析,判断几种不同模型的拟合程度.
[知识链接]
1.有些变量间的关系并不是线性相关,怎样确定回归模型
答 首先要作出散点图,如果散点图中的样本点并没有分布在某个带状区域内,则两个变量不呈现线性相关关系,不能直接利用线性回归方程来建立两个变量之间的关系,这时可以根据已有函数知识,观察样本点是否呈指数函数关系或二次函数关系,选定适当的回归模型.
2.如果两个变量呈现非线性相关关系,怎样求出回归方程
答 可以通过对解释变量进行变换,如对数变换或平方变换,先得到另外两个变量间的回归方程,再得到所求两个变量的回归方程.
(
[预习导引]
1.非线性回归分析
对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型.
2.非线性回归方程
曲线方程
曲线图形
公式变换
变换后的线性函数
y=axb
·
c=lna
v=lnx
u=lny
u=c+bv
y=aebx
c=lna
u=lny
u=c+bx
y=ae
.
c=lna
v=
u=lny
u=c+bv
y=a+blnx
v=lnxu=y
u=a+bv
#
要点一 线性回归分析
例1 某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元)
4
2
3
5
销售额y(万元)
49
26
…
39
54
(1)由数据易知y与x具有线性相关关系,若b=,求线性回归方程y=a+bx;
(2)据此模型预报广告费用为4万元时的销售额.
解
(1)
=
=,
=
=42,
∴a=
-b
=42-×=
∴回归直线方程为y=+.
(2)当x=4时,y=+×4=,
故广告费用为6万元时销售额为万元.
跟踪演练1 为了研究3月下旬的平均气温(x)与4月20日前棉花害虫化蛹高峰日(y)的关系,某地区观察了2006年2011年的情况,得到了下面的数据:
¥
年份
2006
2007
2008
2009
2010
2011
x/℃
)
y/日
19
6
1
10
1
-
8
(1)对变量x,y进行相关性检验;
(2)据气象预测,该地区在2012年3月下旬平均气温为27℃,试估计2012年4月化蛹高峰日为哪天.
解 制表.
i
1
2
3
4
5
{
6
xi
yi
19
…
6
1
10
1
8
≈,
y2=563,
=,
x
=5,
xiyi=1
(1)r=
≈-8.
由|r|>,可知变量y和x存在很强的线性相关关系.
(2)b=
≈-,a=
-b
≈.所以,线性回归方程为y=-.当x=27时,y=-×27=.据此,可估计该地区2012年4月12日或13日为化蛹高峰日.
"
要点二 可线性化的回归分析
例2 在一化学反应过程中,化学物质的反应速度y(g/min)与一种催化剂的量x(g)有关,现收集了8组观测数据列于表中:
催化剂的量x/g
15
18
21
24
27
30
33
\
36
化学物质的反应速度y(g·min-1)
6
8
30
27
70
205
65
350
解 根据收集的数据,作散点图(如图),根据已有的函数知识,可以发现样本点分布在某一条指数函数曲数y=c1ec2x的周围,其中c1和c2是待定的参数.
令z=lny,则z=lny=lnc1+c2x,
即变换后的样本点应该分布在直线z=a+bx(a=lnc1,b=c2)的周围.
由y与x的数据表可得到变换后的z与x的数据表:
x
15
18
21
24
!
27
30
33
36
z
,
作出z与x的散点图(如图).
由散点图可观察到,变换后的样本点分布在一条直线的附近,所以可用线性回归方程来拟合.
由z与x的数据表,可得线性回归方程:
z=+,
所以y与x之间的非线性回归方程为
y=e-+.
*
规律方法 可线性化的回归分析问题,画出已知数据的散点图,选择跟散点拟合得最好的函数模型进行变量代换,作出变换后样本点的散点图,用线性回归模型拟合.
跟踪演练2 电容器充电后,电压达到100V,然后开始放电,由经验知道,此后电压U随时间t变化的规律用公式U=Aebt(b<0)表示,现测得时间t(s)时的电压U(V)如下表:
t/s
0
1
2
3
4
5
6
(
7
8
9
10
U/V
100
75
55
40
30
$
20
15
10
10
5
5
试求:
电压U对时间t的回归方程.(提示:
对公式两边取自然对数,把问题转化为线性回归分析问题)
解 对U=Aebt两边取对数得lnU=lnA+bt,令y=lnU,a=lnA,x=t,则y=a+bx,得y与x的数据如下表:
x
0
.
1
2
3
4
5
6
7
8
9
10
{
y
/
根据表中数据作出散点图,如下图所示,从图中可以看出,y与x具有较强的线性相关关系,由表中数据求得
=5,
≈,进而可以求得b≈-,
a=
-b
=,所以y对x的线性回归方程为y=-.
由y=lnU,得U=ey,U=-=·e-,因此电压U对时间t的回归方程为U=·e-.
要点三 非线性回归模型的综合应用
例3 某地区不同身高的未成年男性的体重平均值如下表:
身高x/cm
60
【
70
80
90
100
110
体重y/kg
-
身高x/cm
120
130
140
150
160
170
体重y/kg
(
试建立y与x之间的回归方程.
解 根据题干表中数据画出散点图如图所示.
由图看出,样本点分布在某条指数函数曲线y=c1ec2x的周围,于是令z=lny.
*
x
60
70
80
90
100
110
120
130
140
¥
150
160
170
z
&
画出散点图如图所示.
由表中数据可得z与x之间的线性回归方程:
z=+,则有y=+.
规律方法 根据已有的函数知识,可以发现样本分布在某一条指数型函数曲线y=c1ec2x的周围,其中c1和c2是待定参数;可以通过对x进行对数变换,转化为线性相关关系.
*
跟踪演练3 对两个变量x,y取得4组数据(1,1),(2,,(3,,(4,,甲、乙、丙三人分别求得数学模型如下:
甲 y=+1,
乙 y=-++,
丙 y=-·+,试判断三人谁的数学模型更接近于客观实际.
解 甲模型,当x=1时,y=;当x=2时,y=;
当x=3时,y=;当x=4时,y=.
乙模型,当x=1时,y=1;当x=2时,y=;
当x=3时,y=;当x=4时,y=.
丙模型,当x=1时,y=1;当x=2时,y=;
当x=3时,y=;当x=4时,y=.
观察4组数据并对照知,丙的数学模型更接近于客观实际.
1.在一次试验中,当变量x的取值分别为1,
,
,
时,变量y的值分别为2,3,4,5,则y与
的回归方程为( )
A.y=
+1B.y=
+3
C.y=2x+1D.y=x-1
答案 A
解析 由数据可得,四个点都在曲线y=
+1上.
2.某种产品的广告费支出与销售额(单位:
百万元)之间有如下对应数据:
广告费
2
~
4
5
6
8
销售额
30
40
60
50
70
@
则广告费与销售额间的相关系数为( )
A.B.0.919C.D.
答案 B
3.根据统计资料,我国能源生产发展迅速.下面是我国能源生产总量(单位:
亿吨标准煤)的几个统计数据:
年份
1996
2001
2006
2011
产量
·
根据有关专家预测,到2020年我国能源生产总量将达到亿吨左右,则专家所选择的回归模型是下列四种模型中的哪一种( )
A.y=ax+b(a≠0)B.y=ax2+bx+c(a≠0)
C.y=ax(a>0且a≠1)D.y=logax(a>0且a≠1)
答案 A
4.某种产品的广告费支出x与销售额y之间有下表关系,现在知道其中一个数据弄错了,则最可能错的数据是__________.
x/万元
)
2
4
5
6
8
y/万元
30
40
60
50
?
70
答案 (6,50)
一、基础达标
1.下表提供了某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据.根据表中提供的数据,求出y关于x的线性回归方程是y=+,那么表中t的值是( )
x
3
4
5
6
,
y
t
4
A.4.5B.4C.3D.
答案 C
2.下列数据x,y符合哪一种函数模型( )
x
1
$
2
3
4
5
6
7
8
9
10
y
。
2
3
4
】
=2+
xB.y=2ex
C.y=2e
D.y=2+lnx
答案 D
解析 取x=1,2,…,10分别代入各解析式判断.
3.指数曲线y=aebx的图像为( )
答案 B
解析 ∵y=aebx,∴a>0时y>0,排除A、C,且x∈R,排除D,选B.
4.为研究广告费用x与销售额y之间的关系,有人抽取了5家餐厅,得到的数据如下表:
广告费用x/千元
*
销售额y/千元
^
在同一坐标系中画散点图,直线L:
y=24+,曲线C:
y=
,如图所示.更能表现这组数据之间的关系的是( )
A.直线L
B.曲线C
C.直线L和曲线C都一样
D.无法确定
答案 B
5.已知线性回归方程的斜率的估计值是,样本点的中心为,5),则线性回归方程是__________.
答案 y=+
]
解析 在回归方程中,已知b=,则a=
-b·
=.
6.对于回归方程y=257+,当x=28时,y的估计值是__________.
答案 390
解析 当x=28时,y=257+×28=390,∴y的估计值为390.
7.某医院用光电比色计检验尿汞时,得尿汞含量(mg/L)与消光系数读数结果如下.
尿汞含量(xi)
2
4
6
8
\
10
消光系数(yi)
64
138
205
285
360
(1)画出对应数据的散点图;
(2)求线性回归方程;
(3)根据
(2)的结果,估计当xi为12mg/L时的消光系数yi.
【
解
(1)
(2)y=-+.
(3)当xi=12时代入y=-+,得yi=432.
二、能力提升
8.观察下图中的4个散点图,适合用线性回归模型拟合其中两个变量的是( )
A.①②B.①③C.②③D.③④
答案 B
解析 在研究两个变量之间的关系时,可以根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.这种方法既直观又方便,因而对解决相关性检验问题比较常用.
\
9.下表是某厂1~4月份用水量(单位:
百吨)的一组数据,
月份x
1
2
3
4
用水量y
4
3
'
由某散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是y=-+a,则a=__________.
答案
解析
=,
=,b=-,
∴a=+×=.
10.已知某个样本点中的变量x,y线性相关,相关系数r<0,则在以(
,
)为坐标原点的坐标系下的散点图中,大多数的点都落在第__________象限.
答案 二、四
解析 ∵r<0时b<0,
∴大多数点落在第二、四象限.
11.在一次抽样调查中测得样本的5个样本点,数值如下表:
(
x
1
2
4
y
16
12
5
$
2
1
试建立y与x之间的回归方程.
解 根据散点图可知y与x近似地呈反比例函数关系,设y=
,令t=
,则
y=kt,原数据变为
t
4
2
1
{
y
16
12
5
2
1
由散点图也可以看出y与t呈近似的线性相关关系.列表如下:
序号
》
ti
yi
tiyi
t
y
1
4
16
64
16
#
256
2
2
12
24
4
144
3
1
5
。
5
1
25
4
2
1
4
5
、
1
5
1
∑
36
5
[
430
∴
=,
=.
b=
≈4.
a=
-b
≈.∴y=+.
∴y与x的回归方程是y=+
.
12.某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对比表.
气温/℃
26
18
13
~
10
4
-1
杯数
20
24
34
38
50
64
(
画出散点图并判断热茶销售量与气温之间是否具有线性相关关系.
解 画出散点图如图所示.
=
(26+18+13+10+4-1)≈,
=
(20+24+34+38+50+64)≈,
xiyi=26×20+18×24+13×34+10×38+4×50-1×64=1910,
x
=262+182+132+102+42+(-1)2=1286,
y
=202+242+342+382+502+642=10172,
由r=
可得r≈.
}
由于r的值较大,所以x与y具有很强的线性相关关系.
三、探究与创新
13.某地区不同身高的未成年男性的体重平均值如下表:
身高x/cm
60
70
80
90
100
110
?
体重y/kg
身高x/cm
120
130
140
150
160
170
体重y/kg
(1)试建立y与x之间的回归方程;
(2)若体重超过相同身高男性体重平均值的倍为偏胖,低于倍为偏瘦,那么这个地区一名身高为175cm,体重为82kg的在校男生体重是否正常
解
(1)根据表中的数据画出散点图(如图所示).
由图可看出,样本点分布在某条指数函数曲线y=c1ec2x的周围,于是令z=lny,得下表:
X
60
70
80
90
100
110
120
130
140
150
160
170
Z
作出散点图如图所示.
由表中数据可得z与x之间的线性回归方程为
z=+,则有y=+.
(2)当x=175时,预测平均体重为
y=+×175≈,
由于×≈<82,
所以这个男生偏胖.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三章 13可线性化的回归分析 第三 13 线性化 回归 分析