数学广角数与形教学文稿.docx
- 文档编号:511412
- 上传时间:2022-10-10
- 格式:DOCX
- 页数:10
- 大小:51.57KB
数学广角数与形教学文稿.docx
《数学广角数与形教学文稿.docx》由会员分享,可在线阅读,更多相关《数学广角数与形教学文稿.docx(10页珍藏版)》请在冰豆网上搜索。
数学广角数与形教学文稿
数学广角——数与形
《数学广角──数与形》
一、教材分析
数形结合是一种非常重要的数学思想,把数和形结合起来解决问题,可以使复杂的问题变得更简单,使抽象的问题变得更直观。
1、图形中隐含着数的规律,可利用数的规律来解决图形的问题。
本单元的例1以及相关练习就属于这种情况。
2、有些情况下,是利用图形来直观地解释一些比较抽象的数学原理与事实,让人一目了然。
3、还有的时候,数与形密不可分,可用“数”来解决“形”的问题,也可用“形”来解决“数”的问题。
例如,解析几何中,函数图象与方程、方程组互为工具,互为解释,有机融合。
小学中的正比例关系和反比例关系图象也很好地反映了这样的思想。
《连续奇数数列之和与正方形的关系》
教学内容:
人教版小学数学教材六年级上册第107页例1及相关练习。
教学目标:
1.体会数与形的联系,进一步积累数形结合数学活动经验,培养学生数形结合的数学思想意识。
2.体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力。
3.在解决数学问题的过程中,体会和掌握数形结合、归纳推理等基本的数学思想。
教学重点:
观察、发现数与形的联系,感受数形结合的价值
教学难点:
渗透极限思想
教学准备:
课件,不同颜色的小正方形。
学具准备:
不同颜色的小正方形,吸铁板,作业纸。
教学过程:
一、谈话导入,出示课题
教师:
最近老师发现,我有一项非常神奇的本领。
什么本领呢?
我发现只要从1开始的连续奇数相加,比如,1+3,1+3+5……像这样的算式,我都算得特别快。
你们信吗?
教师:
不信也没关系,我们现场来比一比。
师生比赛,看谁算得快。
教师:
这个方法快吗?
你们想不想也像老师一样算得快呢?
教师:
老师给你们一点点提示,我是借助图形发现这个方法的,今天这节课我们就来研究──数与形(板书)。
二、动手实践,以形解数
1.教师:
我先根据算式中的加数拿出若干个图形。
比如,1+3,我就先拿一个小正方形,再拿三个小正方形(贴在黑板上),我发现这些数量的小正方形刚好可以拼成一个大正方形,那我就把它们拼成一个大的正方形。
教师:
接着,我观察图形和算式之间的关系,就发现了可以快速算得结果的方法,你们想不想自己试试看?
教师:
先来两个加数的,再来三个加数的。
请同学们在小组内先完成第一步,再完成第二步,看看哪个小组最先发现老师的方法。
2.小组动手操作,教师巡视。
3.学生汇报,全班交流分析。
先讨论1+3,再讨论1+3+5。
教师:
根据同学们的汇报,大家认为1+3=22,1+3+5=32。
除了这两组同学的汇报,你们还有其他发现吗?
学生:
算式中加数的个数是几,和就等于几的平方。
教师:
你们认同他的方法吗?
能不能举个具体的例子来说一说?
学生1:
1+3+5+7+9=52。
学生2:
1+3+5+7+9+11=62。
教师:
那我们从头来看一看。
请看屏幕:
1+3+5+7+9=(52)。
教师:
一个小正方形可以看成12,想要拼成一个更大的正方形,再增加1个是不够的,增加的个数要比前一个加数再多2(也就是3);想拼成更大的正方形,再增加3个是不够的,还要比3个再多2个(也就是5个),此时是1+3+5;再往下去,要加7才能拼成更大的正方形,依此类推,加到了9,就能排成每行、每列的个数是5的大正方形。
教师:
那看来只要是1开始的,连续的奇数相加,就能排成每行、每列个数是几的大正方形,和也就是几的平方。
4.练习。
(1)1+3+5+7+9=( )2;
1+3+5+7+9+11+13=( )2;
____________________________=92。
教师请学生独立完成,然后全班核对答案。
(2)利用规律,算一算。
1+3+5+7+5+3+1=( );
1+3+5+7+9+11+13+11+9+7+5+3+1=( )。
全班交流,请学生说明计算结果和原因。
5.小结。
教师:
我们同学都很细心,现在不但能很快算出从1开始的连续奇数的和,稍加一点变化,你们也照样算得很快。
现在知道老师是用什么方法来快速计算这些题的吧?
教师:
这么巧妙的方法,我们是借助什么发现的?
(图形)。
看来,有的计算问题借助图形解决会更容易。
就像这个题一样,我们借助图形发现了更巧妙、更简便的方法。
【设计意图】充分让学生动手实践,感受如何将数和形结合,体会数和形之间的紧密联系,同时让学生感受到“形”可以展示“数”的特点,通过“形”使解决“数”的问题变得更加容易。
三、练习巩固
1.下面每个图中各有多少个红色小正方形和多少个蓝色小正方形?
学生回答,课件出示答案。
教师:
请你认真思考、观察,上边的图形和对应的数之间有什么规律?
四人小组交流。
教师:
刚才有一个同学说,蓝色的小正方形顺次增加1个,红色的小正方形顺次增加2个。
为什么蓝色的小正方形每次增加1个,而红色的小正方形每次增加2个呢?
教师:
我们一起来看一看。
第一个图形,若要增加1个蓝色小正方形,其上方、下方就要各增加1个红色小正方形;依此类推,第三个图形在第二个图形的基础上增加了1个蓝色小正方形,则红色小正方形就要增加几个?
教师:
如果不让你看图,照这样画下去,第6个和第10个图形各有几个红色小正方形和蓝色小正方形呢?
你能写出来吗?
在草稿本上写一写。
教师请学生介绍,说说是怎么算出来的。
教师:
观察发现,图形中左右两侧的红色小正方形个数固定不变(为6个),在中间部分,蓝色小正方形的个数乘以2就是红色小正方形的个数。
即使在蓝色小正方形个数较多的情况下,仍然可以算得很快,看来图形问题确实也蕴涵着数的规律。
找到了其中的规律,解决问题就清晰、容易多了。
2.课件出示教材第109页练习二十二第2题。
(1)教师:
上方有图,下方有对应的数字,请你观察和思考,图和数之间有什么规律?
小组交流一下。
全班交流。
学生:
第2个图形中小圆的个数为1+2,第3个图形中小圆的个数为1+2+3,第4个图形中小圆的个数为1+2+3+4。
学生:
是第几个图形,其中就有几行小圆。
教师:
照这个规律往下画,你能画出来吗?
图形下方的数字表示的是什么?
第5个、第6个、第7个图形下方的数,你能不能很快写出来?
教师请学生独立完成在练习纸上。
教师请学生汇报,说说是怎么得到结果的。
教师:
图形中的最后一行是第几行?
含有几个小圆?
教师:
现在如果老师不让你画图,你能不能想象一下第10个图形,它是什么样子的?
一共有多少个小圆呢?
现在我们就不画图,算一算,第10个图形下方的那个数是多少?
能算出来吗?
动笔试一试。
展示学生作品,请学生介绍方法。
(2)教师介绍“三角形数”“正方形数”。
教师:
同学们发现没有,55个小圆能排成什么图形?
(三角形)而且这个三角形的每一行的小圆的个数分别是从1到10。
教师:
回过头来看看。
3、6、10、15、21呢?
它们是否也具有同样的特点?
教师:
在数学上,我们把1、3、6、10、15、21、28这样的数称为“三角形数”。
请同学们想一想,28后面的下一个三角形数是多少?
(36)
教师:
大家再看,一个图形,如果是4个小正方形可以拼成大正方形,如果是9个小正方形可以拼成大正方形,16个小正方形也可以拼成大正方形。
像这样的数,我们称之为“正方形数”。
【设计意图】通过两个练习,让学生进一步体会数形结合的特点,感受用形来解决数的有关问题的直观性与简捷性。
在练习中充分让学生动脑、动口、动手,在交流中发现特点,解决问题。
四、回顾反思
教师:
今天这节课,我们一起学习了“数与形”,说说你有什么收获?
《利用图形求等比数列之和》教学设计
教学内容:
人教版小学数学教材六年级上册第107~108页例2及相关练习。
教学目标:
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
教学重难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。
(板书课题:
数与形)
【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知
(一)教师与学生比赛算题
1.教师:
你知道
等于多少吗?
(学生:
)
教师:
那
等于多少呢?
(学生计算需要时间)教师紧接着说:
我已经算好了,是
,不信你算算。
2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。
有的同学不相信是吗?
咱们试试就知道。
为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。
谁来出题?
学生出题。
预设:
,
,
,
,
……
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3.知道我为什么算得那么快吗?
因为我有一件神秘的法宝,你们也想知道吗?
【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。
另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示
:
用一个正方形表示“1”,先取它的一半就是正方形的
(涂红),再剩下部分的一半就是正方形的
(涂黄)。
想一想:
正方形中表示
的涂色部分与空白部分和整个正方形之间有什么关系呢?
(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?
(
)那么涂色部分还可以怎么算呢?
(
),也就是说
。
(2)继续演示
,谁知道除了通分,还可以怎么算?
根据学生回答,板书
。
(3)演示
:
那么计算
就可以得到?
(
)。
3.看到这儿,你发现什么规律了吗?
4.小结:
按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。
5.这个法宝怎么样?
谁来说说它好在哪里?
你学会了吗?
6.尝试练习:
;
;
。
【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。
(三)知识提升,探索发现
1.感受极限。
(1)刚才我们已经从一直加到了
,如果我继续加,加到
,得数等于?
(
)再接着加,一直加到
,得数等于?
(
)随着不断继续加,你发现得数越来越?
(大)无数个这样的数相加,和会是多少呢?
(2)这时候你心中有没有一个大胆的猜想?
(学生猜想:
这样一直加下去,得数会不会就等于1了。
)
(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?
(小)而涂色部分的面积越来越接近?
(1)也就是求和的得数越来越接近?
(1)最终得数是1吗?
你有什么方法来证明得数就是1?
(学情预设:
学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。
)
2.利用线段图直观感受相加之和等于“1”。
(1)书本上有两幅图,我们一起来看看(课件出示)。
一幅是圆形图,一幅是线段图,你能看懂它的意思吗?
请你想一想,然后告诉大家你的想法。
(2)学生看书思考。
(3)全班交流,课件演示,得出结论:
这些分数不断加下去,总和就是1。
【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 广角 教学 文稿