抛物线入门压轴系列一 等腰三角形 直角三角形.docx
- 文档编号:4760758
- 上传时间:2022-12-08
- 格式:DOCX
- 页数:5
- 大小:25.40KB
抛物线入门压轴系列一 等腰三角形 直角三角形.docx
《抛物线入门压轴系列一 等腰三角形 直角三角形.docx》由会员分享,可在线阅读,更多相关《抛物线入门压轴系列一 等腰三角形 直角三角形.docx(5页珍藏版)》请在冰豆网上搜索。
抛物线入门压轴系列一等腰三角形直角三角形
抛物线压轴题基础-三角形
编号日期时间:
姓名:
No.Date:
Time:
Name:
【等腰三角形专题】
【题型一】如图,已知抛物线y=-
+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).
(1)求抛物线的解析式及其对称轴方程;
(2)连接AC、BC,试判断△AOC与△COB是否相似?
并说明理由;
(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?
若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
【实战一】已知二次函数y=ax2-4x+c的图象过点(-1,0)和点(2,-9).
(1)求该二次函数的解析式并写出其对称轴;
(2)已知点P(2,-2),连结OP,在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).
【实战二】 如图,已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.
(1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P,使得△PAB是以AB为底的等腰三角形?
若存在,求出点P的坐标;若不存在,请说明理由.
【实战三】 抛物线y=ax2+2x+c与其对称轴相交于点A(1,4),与x轴正半轴交于点B.
(1)求这条抛物线的函数关系式;
(2)在抛物线对称轴上确定一点C,使△ABC是等腰三角形,求出所有点C的坐标.
【实战四】 如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于两点A,B,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为点D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).
(1)、求抛物线的函数表达式;
(2)、求点E的坐标;
(3)、试探究在x轴下方的抛物线上是否存在点F,使得△FOB和△EOB的面积相等,若存在,请求出点F的坐标,若不存在,请说明理由;
(4)、若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,请直接写出:
当m为何值时,△OPQ是等腰三角形.
【实战五】如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.
(1)、求该抛物线的函数解析式;
(2)、已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.
①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;
②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?
若存在,求出点P的坐标;若不存在,请说明理由.
【实战6】如图,二次函数y=
x2+bx﹣
的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.
(1)b的值及点D的坐标。
(2)线段AO上是否存在点P(点P不与A、O重合),使得OE的长为1;
(3)在x轴负半轴上是否存在这样的点P,使△PED是等腰三角形?
若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.
【实战7】如图,已知抛物线y=x2+bx+c与直线y=﹣x+3交于A、B两点,点A在y轴上,点B在x轴上,抛物线与x轴的另一交点为C,点P在点B右边的抛物线上,PM⊥x轴交直线AB于M.
(1)求抛物线解析式.
(2)当PM=2BC时,求M的坐标.
(3)点P运动过程中,△APM能否为等腰三角形?
若能,求点P的坐标,若不能说明理由.
【直角三角形专题】
【题型一】如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=
.
(1)求抛物线的对称轴和点P的坐标.
(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?
如果存在,求点D的坐标;如果不存在,请说明理由.
【实战1】在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.
(1)、如图1,当k=1时,直接写出A,B两点的坐标;
(2)、在
(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;
(3)、如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?
若存在,请求出此时k的值;若不存在,请说明理由
【实战2】如图,已知抛物线E1:
y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y轴的对称点分别为点A′,B′.
(1)求m的值;
(2)求抛物线E2所表示的二次函数的表达式;
(3)在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?
若存在,求出点Q的坐标;若不存在,请说明理由.
【实战3】在平面直角坐标系xOy中,抛物线与x轴分别交于点A(2,0)、点B(点B在点A的右侧),与轴交于点C,tan∠CBA=
.
(1)求该抛物线的表达式;
(2)设该抛物线的顶点为D,求四边形ACBD的面积;
(3)设抛物线上的点E在第一象限,△BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.
【实战4】(2013•抚顺)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.
(1)求抛物线的解析式;
(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?
直接写出所有符合条件的t值.
【相似三角形专题】
【题型一】(2011•营口)如图
(1),直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C、P、M为顶点的三角形为等腰三角形?
若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;
(3)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?
若存在,请求出点Q的坐标;若不存在,请说明理由;
(4)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值.
(图
(2)、图(3)供画图探究)
【实战1】(2014•朝阳)如图,平面直角坐标系中,抛物线y=ax2+bx+4经过点D(2,4),且与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C,连接AC,CD,BC
(1)直接写出该抛物线的解析式
(2)点P是所求抛物线上的一个动点,过点P作x轴的垂线l,l分别交x轴于点E,交直线AC于点M.设点P的横坐标为m.
①当0≤m≤2时,过点M作MG∥BC,MG交x轴于点G,连接GC,则m为何值时,△GMC的面积取得最大值,并求出这个最大值
②当﹣1≤m≤2时,试探求:
是否存在实数m,使得以P,C,M为顶点的三角形和△AEM相似?
若存在,求出相应的m值;若不存在,请说明理由.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抛物线入门压轴系列一 等腰三角形 直角三角形 抛物线 入门 压轴 系列