光纤知识.docx
- 文档编号:4379922
- 上传时间:2022-12-01
- 格式:DOCX
- 页数:11
- 大小:83.48KB
光纤知识.docx
《光纤知识.docx》由会员分享,可在线阅读,更多相关《光纤知识.docx(11页珍藏版)》请在冰豆网上搜索。
光纤知识
光及其特性:
1.光是一种电磁波。
可见光部分波长范围是:
390~760nm(毫微米)。
大于760nm部分是红外光,小于390nm部分是紫外光。
光纤中应用的是:
850,1300,1550三种
光传输系统由三部分组成:
光源(光发送机),传输介质、检测器(光接收机)。
其中光源和检测器的工作都是由光端机完成的。
光端机就是将多个E1(一种中继线路的数据传输标准,通常速率为2.048Mbps,此标准为中国和欧洲采用)信号变成光信号并传输的设备(它的作用主要就是实现电-光和光-电转换)。
光端机根据传输E1口数量的多少,价格也不同。
一般最小的光端机可以传输4个E1,目前最大的光端机可以传输4032个E1。
在监控领域里,安全尤为重要,但由于在IP监控网络中,图像及数据资料易被截取,通过网络传输的保密性不高…这些都制约着当今IP在视频传输中的发展。
对照光纤/光端机的性能,这些地方又恰恰是其独一无二的功能优势。
因此光端机网络传输无疑是现阶段较为理想的一种远程视频传输方式;。
光纤带宽巨大,可以同时传大量视频/图片;光电信号转换形式。
图片无需经过压缩,可以达到传输无延时;同时系统采用专用通迅,可靠性、安全性较高。
光纤的优点:
1.光纤的通频带很宽.理论可达30亿兆赫兹。
2.无中继段长.几十到100多公里,铜线只有几百米。
3.不受电磁场和电磁辐射的影响。
4.重量轻,体积小。
例如:
通2万1千话路的900对双绞线,其直径为3英寸,重量8吨/KM。
而通讯量为其十倍的光缆,直径为0.5英寸,重量450P/KM。
5.光纤通讯不带电,使用安全可用于易燃,易暴场所。
6.使用环境温度范围宽。
7.化学腐蚀,使用寿命长
按光在光纤中的传输模式可分为:
单摸光纤和多模光纤。
多模光纤:
中心玻璃芯较粗(50或62.5μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
例如:
600MB/KM的光纤在2KM时则只有300MB的带宽了。
因此,多模光纤传输的距离就比较近,一般只有几公里。
单模光纤:
中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。
因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
B.按最佳传输频率窗口分:
常规型单模光纤和色散位移型单模光纤。
常规型:
光纤生产厂家将光纤传输频率最佳化在单一波长的光上,如1300nm。
色散位移型:
光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:
1300nm和1550nm。
C.按折射率分布情况分:
突变型和渐变型光纤。
突变型:
光纤中心芯到玻璃包层的折射率是突变的。
其成本低,模间色散高。
适用于短途低速通讯,如:
工控。
但单模光纤由于模间色散很小,所以单模光纤都采用突变型。
渐变型光纤:
光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。
4.常用光纤规格:
单模:
8/125μm,9/125μm,10/125μm
多模:
50/125μm,欧洲标准
62.5/125μm,美国标准
按光在光纤中的传输模式分:
单模光纤和多模光纤。
多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。
光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。
光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。
由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。
80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。
多模光纤
多模光纤(MultiModeFiber):
中心玻璃芯较粗(50或62.5μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
例如:
600MB/KM的光纤在2KM时则只有300MB的带宽了。
因此,多模光纤传输的距离就比较近,一般只有几公里。
单模光纤单模光纤(SingleModeFiber):
中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。
因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。
这就是说在1.31μm波长处,单模光纤的总色散为零。
从光纤的损耗特性来看,1.31μm处正好是光纤的一个低损耗窗口。
这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。
1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。
传输工程经常要用到光跳线、光尾纤、适配器等,
上图中均为光连接器,常见的是FC(俗称圆头)、SC(俗称方头)和LC。
FC型又分为FC/FC和FC/PC(APC)型,前一个FC是FerruleConnector的缩写,表明其外部加强件是采用金属套,紧固方式为螺丝扣;后面的FC表明接头的对接方式为平面对接,PC是PhysicalConnection的缩写,表明其对接端面是物理接触,即端面呈凸面拱型结构,APC和PC类似,但采用了特殊的研磨方式,PC是球面,APC是斜8度球面,指标要比PC好些。
目前电信网常用的是FC/PC型,FC/APC多用于有线电视系统。
一般写成FC或PC均是指FC/PC光连接器。
SC型其外壳采用模塑工艺,用铸模玻璃纤维塑料制成,呈矩型;插头套管(也称插针)由精密陶瓷制成,耦合套筒为金属开缝套管结构,其结构尺寸与FC型相同,端面处理采用PC或APC型研磨方式;紧固方式是采用插拔销闩式,不需旋转头。
常用于在数据工程中使用。
一般SC型均指SC/PC。
LC光纤连接器采用模块化插孔(RJ)机理制成。
其所采用的插针和套桶的尺寸是普通SC,FC等尺寸的一半。
LC常见于通信设备的高密度的光接口板上。
上图是各种光连接器与之对应的适配器,也称法兰盘,用在ODF架上,供光纤连接。
FC/PC和SC法兰盘一般价格在10-15元/个左右。
该图为FC/PC型光纤跳纤(非正规叫法是双头尾纤),英文名为PATCHCORD即两头带光纤连接器的软光纤,用于设备至ODF架的连接以及ODF架之间的跳接。
光跳线颜色为黄色,表示单模跳纤。
该图为MTRJ-SC型光纤跳纤,光跳线颜色为橙色,表示多模跳纤。
另外,还有用于光缆成端的尾纤,英文名为PIGTAILCORD,一端与光缆熔接,一端固定在ODF上。
在生产中,为了便于测试,均生产为跳纤,即两头均有光纤连接器,施工时,从中间剪断,一根跳纤即成了两根尾纤。
在90年代早期,国内很少能生产光纤跳线,价格奇贵,到现在,生产制作光纤跳线已是生产密集型劳动了,只要配置好研磨仪器,任何一个家庭作坊都可作出达到国标的跳线来。
光纤跳线的价格,很大程度上是有陶瓷芯、光纤以及金属套构成,这些需要跳线生产者外购,价格档次由此拉开。
一般卖跳线时不会说这些外购件的品牌的。
一般情况下,3米光跳线(FC或SC)在40元左右,跳线增加一米,加1元钱。
这个价格要看采用什么外购件了,一般采用国内的话,仍还有很大的利润。
光纤的应用:
人类社会现在已发展到了信息社会,声音、图象和数据等信息的交流量非常大。
以前的通讯手段已经不能满足现在的要求,而光纤通讯以其信息容量大、保密性好、重量轻体积小、无中继段距离长等优点得到广泛应用。
其应用领域遍及通讯、交通、工业、医疗、教育、航空航天和计算机等行业,并正在向更广更深的层次发展。
光及光纤的应用正给人类的生活带来深刻的影响与变革
路线较长时则需要核算系统的衰减余量,核算可按下面公式进行:
衰减余量=发射光功率-接受灵敏度-线路衰减-连接衰减(dB)其中线路衰减=光缆长度×单位衰减;单位衰减与光纤质量有很大关系,一般单模为0.4~0.5dB/km;多模为2~4dB/km。
模拟光端机与数字光端机的区别
1、光纤上传输的信号方式不一样
模拟光端机上光头发射的光信号是模拟光调制信号,它随输入的模拟载波信号的幅度、频率、相位变化引起光信号幅度、频率、相位变化而分别称为调幅、调频、调相光端机。
数字光端机上光头发射的光信号是数字信号即0或1对应光信号强、弱两种状态,不同的0和1组合代表不同幅度的视频、音频、数据信号。
2、模拟信号传输输入和输出处理方式不一样
无论模拟、数字光端机,对输入的基带的视频、音频、数据信号都必须进行处理。
对于模拟调幅光端机,处理方式是将视频、音频、数据的幅度对一高频载波信号进行调制,使高频载波信号的幅度随视频、音频、数据的幅度变化而变化;对于模拟调频光端机,处理方式是将视频、音频、数据的幅度对一高频载波信号进行调制,使高频载波信号的频率随视频、音频、数据的幅度变化而变化;对于模拟调相光端机,处理方式是将视频、音频、数据的幅度对一高频载波信号进行调制,使高频载波信号的相位随视频、音频、数据的幅度变化而变化。
而数字式光端机对对输入的基带的视频、音频、数据进行高分辨率的模拟-数字转换,如1Vp-p幅度范围的幅度信号利用12bits的数字信号来表示,1V等分成4096,因此模数转换后引起的最大电压幅度误差为1/4096V(约2.5mV),此误差电压称为量化误差电压,各种幅度的电压数值从0V、1/4096V、2/4096V...最大1V分别对应的数字编码为000000000000、000000000001、000000000010...111111111111。
数字编码信号直接控制光头发射的光信号的强、弱两种状态(对应0或1),接收光端机再将数字编码进行数字-模拟转换,恢复成原始的基带的视频、音频、数据信号。
3、处理方式的不同,引起的视频、音频、数据信号信号失真、变畸变、干扰不同
模拟光端机由于要进行调幅、调频、调相,所以模拟信号的幅度的变化与载波信号因调制而引起的幅度、频率、相位的变化是否为一一对应的线形关系成为拟光端机质量好坏的关键,到目前为止,很难做到真正线性调制,非线形必然引起信号失真;同时调制好的载波信号信号还要调制光信号,光信号的非线性也是一个非常重要的因素,众所周知,光器件的非线性与环境温度变化、工作电压的稳定性、光发射功率有很大的影响,因此光器件在生产时需进行7-10天的热循环老化等等工艺筛选、老化、测试也只能以将这种变换控制在一定的范围;光信号在光纤中长距离传输,会引起光信号的功率衰减,传输频率漂移、相位失真,光信号色散效应同样也会引起光信号畸变;光信号到达接收端,接收光器件仍然要引起非线性失真,由光电转换后的模拟信号进入解调,解调与调制一样会产生非线性畸变。
所以综合模拟光端机,从输入信号调制-电光转换-光输-光电转换-解调这五个过程,都会引起非线形失真,而这些信号畸变失真是固有的所以是不可消除的,所以模拟光端机传输视频图象、音频质量、数据的效果很难达到很满意的效果。
数字式光端机仅只有模数转换的量化误差(如1V视频信号12bits时仅为2.5mv),不足以引起信号畸变。
4、多路信号同传引起的交调失真
在现场监控应用中,用户可能有许多各种信号,如视频图像、音频、数据、以太网、电话或其它用户自定义的信号,每种信号分别用一对光端机来传输,必然价格昂贵,所以为了提高光纤的利用效率,降低成本,必须的各种信号在光端机进行复用,以便在一对或一根光纤上传输。
对调频、调幅、调相光端机来讲,传输10/100M以太网信号或多路电话等高速信号是难以做到的,将多路视频或音频信号混合调频、调幅、调相在某一载波上必然会引起各种镜像、交调干扰。
所以目前市场上不乏很多著名国外品牌的调频、调幅、调相光端机多路视频、音频、数据同传时经常出现相互干扰的现象,这些不稳定的现象都是模拟调制技术长期以来一直所固有的缺点。
所以模拟光端机传输信号容量有限,一般不会超过4路信号同传。
而数字光端机传输的是数字信号,很容易进行大容量复用并且不会出现相互干扰。
5、稳定性不同
模拟调制光端机由于采取载波调制方式,载波及光头很容易受环境温度影响。
出现传输质量随环境变化而变化的缺点。
正因为这种缺点,对一些大型、重要工程来讲,模拟光端机的维护成了很令人头疼的问题,由此也给很多工程承包商或业主带来了很大不满。
所以对一些重要的工程选用数字光端机是一种明智的选择。
∙传输系统出现故障的分析与解决方法
电视监控的传输系统,常用的还是以视频传输为主。
下面我们就视频传输方式下出现的故障现象进行分析并提出一些解决方法。
1、视频传输中,最常见的故障现象是50周的工频干扰。
表现形式是在监视器的画面上出现了一条黑杠或白杠,并且向上或向下慢慢滚动。
这种现象多半是由系统产生了地坏路而引入了50周的工频干扰(交流电的干扰)所造成的。
需要一提的是,有时由于摄像机或控制主机(矩阵切换器)的电源性能不良(或局部损坏)也会出现这种故障现象(有时也会出现二条黑杠或白杠),因此,在分析这类故障现象时,要分清产生故障的两种不同原因。
要分清是电源的问题还是地环路的问题,一种简易的方法是,在控制主机上,就近只接入一台电源没有问题的摄像机输出信号,如果在监视器上没有出现上述的干扰现象,则说明控制主机无问题。
接下来可用一台便携式监视器就近接在前端摄像机的视频输出端,并一台台摄像机逐个检看,以便查找有否因电源出现问题而造成干扰的摄像机。
如有,则进行处理。
如无,则干扰是由地环路等其它原因造成的。
2、监视器上出现木纹状的干扰。
这种干扰的出现,轻微时不会淹没正常图像,而严重时图像就无法观看了(甚至破坏同步)。
这种故障现象产生的原因较多也较复杂。
大致有如下几种原因:
视频传输线的质量不好,特别是屏蔽性能差(屏蔽网不是质量很好的铜线网,或屏蔽网过稀而起不到屏蔽作用)。
与此同时,这类视频线的线电阻过大,因而造成信号产生较大衰减也是加重故障的原因。
此外,这类视频线的特性阻抗不是75Ω,以及分布参数超出规定也是产生故障的原因之一。
这种故障原因,既难判断,又因判断后由于已施工完毕(布线已完毕),故难以用换线等办法解决。
因此,选用符合标准和要求的视频电缆是必须事先保证的。
决不能因考虑省钱而购买质量差的视频电缆线,否则后患无穷。
由于上述的干扰现象不一定就是视频线不良而产生的故障,所以判断是要准确和慎重。
只有当排除了其它可能后,才能从视频线不良的角度去考虑。
判断的方法是,在排除其它可能造成这种故障的原因之后,有条件的话,把剩余的这种视频电缆(如无剩余,则只好在系统中截取一段这样的电缆)送到检验部门去检测。
检测结果不合格时,则可确定是电缆质量问题了。
如果真是电缆质量问题,最好的办法当然是把所有的这种电缆全部换掉,换成符合要求的电缆,这是彻底解决问题的最好办法。
在干扰不十分严重的情况下,可以试着采取通过净化电源,在线连接的UPS向整个系统供电的方式,往往能减轻或基本消除干扰。
但这种方法有时会因系统周围空间信号情况的不同而效果不明显或有时管用、有时不管用。
由于供电系统的电源不“洁净”而引起的。
这里所指的电源不“洁净”,是指在正常的电源(50周的正弦波)上叠加有干扰信号。
而这种电源上的干扰信号,多来自本电网中使用可控硅的设备。
特别是大电流、高电压的可控硅设备,对电网的污染非常严重,这就导致了同一电网中的电源不“洁净”。
比如本电网中有大功率可控硅调频调速装置,可控硅整流装置、可控硅交直流变换装置等等,都会对电源产生污染。
这种情况的解决方法比较简单,只要对整个系统采用净化电源或在线UPS供电就基本上可以得到解决。
系统附近有很强的干扰源。
这可以通过调查和了解而加以判断。
如果属于这种原因,解决的办法是加强摄像机的屏蔽,以及对视频电缆线的管道进行接地处理等。
3、由于视频电缆线的芯线与屏蔽网短路、断路造成的故障。
这种故障的表现形式是在监视器上产生较深较乱的大面积网纹干扰,以至图像全部被破坏,形不成图像和同步信号。
这种情况多出现在BNC接头或其它类型的视频接头上。
只要认真逐个检查这些接头,就可以解决问题。
这类故障现象还有一点是容易判断的,即这种故障现象出现时,往往不会是整个系统的各路信号均出问题,而仅仅出现在那些接头不好的路数上。
4、由于传输线的特性阻抗不匹配引起的故障现象。
这种现象的表现形式是在监视器的画面上产生的若干条间距相等的竖条干扰,干扰信号的频率基本上是行频的整数倍。
这是由于视频传输线的特性阻抗不是75Ω而导致阻抗失配造成的。
如果用示波器观看被干扰图像的波形时,会发现在行同步头的后肩上,叠加有幅度较高的行频谐波振荡波形,干扰就是由此引起的。
通过对波形的分析和对视频电缆的定量测量,还会发现这种阻抗不符合要求的视频电缆线,其分布参数也是不符合要求的,实际上这也是阻抗失配的原因之一。
因此,也可以说,产生这种干扰现象是由视频电缆的特性阴抗和分布参数都不符合要求综合引起的。
这种问题的解决一般靠“始端串接电阻”或“终端并接电阻”的方法去解决。
这里值得注意的是,在视频传输距离很短时(一般为150米以内),使用上述阻抗失配和分布参数过大的视频电缆不一定会出现上述的干扰现象。
因此,在一个传输距离远近相差很大的系统中,分析这种故障现象时不要受到短距离无干扰的迷惑。
解决上述问题的根本办法是在选购视频电缆时,一定要保证质量。
必要时应对电缆进行抽样检测。
5、由于传输线引入的空间辐射干扰。
这种干扰现象的产生,多半是因为在传输系统、系统前端或中心控制室附近有较强的、频率较高的空间辐射源。
这种情况的解决办法一个是在系统建立时,应对周边环境有所了解,尽量设法避开或远离辐射源;另一个办法是当无法避开辐射源时,对前端及中心设备加强屏蔽,对传输线的管路采用钢管并良好接地。
∙传输系统出现故障的分析与解决方法
电视监控的传输系统,常用的还是以视频传输为主。
下面我们就视频传输方式下出现的故障现象进行分析并提出一些解决方法。
1、视频传输中,最常见的故障现象是50周的工频干扰。
表现形式是在监视器的画面上出现了一条黑杠或白杠,并且向上或向下慢慢滚动。
这种现象多半是由系统产生了地坏路而引入了50周的工频干扰(交流电的干扰)所造成的。
需要一提的是,有时由于摄像机或控制主机(矩阵切换器)的电源性能不良(或局部损坏)也会出现这种故障现象(有时也会出现二条黑杠或白杠),因此,在分析这类故障现象时,要分清产生故障的两种不同原因。
要分清是电源的问题还是地环路的问题,一种简易的方法是,在控制主机上,就近只接入一台电源没有问题的摄像机输出信号,如果在监视器上没有出现上述的干扰现象,则说明控制主机无问题。
接下来可用一台便携式监视器就近接在前端摄像机的视频输出端,并一台台摄像机逐个检看,以便查找有否因电源出现问题而造成干扰的摄像机。
如有,则进行处理。
如无,则干扰是由地环路等其它原因造成的。
2、监视器上出现木纹状的干扰。
这种干扰的出现,轻微时不会淹没正常图像,而严重时图像就无法观看了(甚至破坏同步)。
这种故障现象产生的原因较多也较复杂。
大致有如下几种原因:
视频传输线的质量不好,特别是屏蔽性能差(屏蔽网不是质量很好的铜线网,或屏蔽网过稀而起不到屏蔽作用)。
与此同时,这类视频线的线电阻过大,因而造成信号产生较大衰减也是加重故障的原因。
此外,这类视频线的特性阻抗不是75Ω,以及分布参数超出规定也是产生故障的原因之一。
这种故障原因,既难判断,又因判断后由于已施工完毕(布线已完毕),故难以用换线等办法解决。
因此,选用符合标准和要求的视频电缆是必须事先保证的。
决不能因考虑省钱而购买质量差的视频电缆线,否则后患无穷。
由于上述的干扰现象不一定就是视频线不良而产生的故障,所以判断是要准确和慎重。
只有当排除了其它可能后,才能从视频线不良的角度去考虑。
判断的方法是,在排除其它可能造成这种故障的原因之后,有条件的话,把剩余的这种视频电缆(如无剩余,则只好在系统中截取一段这样的电缆)送到检验部门去检测。
检测结果不合格时,则可确定是电缆质量问题了。
如果真是电缆质量问题,最好的办法当然是把所有的这种电缆全部换掉,换成符合要求的电缆,这是彻底解决问题的最好办法。
在干扰不十分严重的情况下,可以试着采取通过净化电源,在线连接的UPS向整个系统供电的方式,往往能减轻或基本消除干扰。
但这种方法有时会因系统周围空间信号情况的不同而效果不明显或有时管用、有时不管用。
由于供电系统的电源不“洁净”而引起的。
这里所指的电源不“洁净”,是指在正常的电源(50周的正弦波)上叠加有干扰信号。
而这种电源上的干扰信号,多来自本电网中使用可控硅的设备。
特别是大电流、高电压的可控硅设备,对电网的污染非常严重,这就导致了同一电网中的电源不“洁净”。
比如本电网中有大功率可控硅调频调速装置,可控硅整流装置、可控硅交直流变换装置等等,都会对电源产生污染。
这种情况的解决方法比较简单,只要对整个系统采用净化电源或在线UPS供电就基本上可以得到解决。
系统附近有很强的干扰源。
这可以通过调查和了解而加以判断。
如果属于这种原因,解决的办法是加强摄像机的屏蔽,以及对视频电缆线的管道进行接地处理等。
3、由于视频电缆线的芯线与屏蔽网短路、断路造成的故障。
这种故障的表现形式是在监视器上产生较深较乱的大面积网纹干扰,以至图像全部被破坏,形不成图像和同步信号。
这种情况多出现在BNC接头或其它类型的视频接头上。
只要认真逐个检查这些接头,就可以解决问题。
这类故障现象还有一点是容易判断的,即这种故障现象出现时,往往不会是整个系统的各路信号均出问题,而仅仅出现在那些接头不好的路数上。
4、由于传输线的特性阻抗不匹配引起的故障现象。
这种现象的表现形式是在监视器的画面上产生的若干条间距相等的竖条干扰,干扰信号的频率基本上是行频的整数倍。
这是由于视频传输线的特性阻抗不是75Ω而导致阻抗失配造成的。
如果用示波器观看被干扰图像的波形时,会发现在行同步头的后肩上,叠加有幅度较高的行频谐波振荡波形,干扰就是由此引起的。
通过对波形的分析和对视频电缆的定量测量,还会发现这种阻抗不符合要求的视频电缆线,其分布参数也是不符合要求的,实际上这也是阻抗失配的原因之一。
因此,也可以说,产生这种干扰现象是由视频电缆的特性阴抗和分布参数都不符合要求综合引起的。
这种问题的解决一般靠“始端串接电阻”或“终端并接电阻”的方法去解决。
这里值得注意的是,在视频传输距离很短时(一般为150米以内),使用上述阻抗失配和分布参数过大的视频电缆不一定会出现上述的干扰现象。
因此,在一个传输距离远近相差很大的系统中,分析这种故障现象时不要受到短距离无干扰的迷惑。
解决上述问题的根本办法是在选购视频电缆时,一定要保证质量。
必要时应对电缆进行抽样检测。
5、由于传输线引入的空间辐射干扰。
这种干扰现象的产生,多半是因为在传输系统、系统前端或中心控制室附近有较强的、频率较高的空间辐射源。
这种情况的解决办法一个是在系统建立时,应对周边环境有所了解,尽量设法避开或远离辐射源;另一个办法是当无法避开辐射源时,对前端及中心设备加强屏蔽,对传输线的管路采用钢管并良好接地。
∙摄像机、云台等常见故障原因分析
1、摄像机无图像
a、摄像机本身质量问题
b、摄像机供电电源问题
c、连接摄像机的线路有问题
d、在监控室,连接摄像机的设备有问题
2、云台不转动
a、云台本身质量问题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 光纤 知识