Topic 2 Individual Preferences.docx
- 文档编号:4201319
- 上传时间:2022-11-28
- 格式:DOCX
- 页数:15
- 大小:91.91KB
Topic 2 Individual Preferences.docx
《Topic 2 Individual Preferences.docx》由会员分享,可在线阅读,更多相关《Topic 2 Individual Preferences.docx(15页珍藏版)》请在冰豆网上搜索。
Topic2IndividualPreferences
E5650–MicroeconomicTheory
Topic2:
IndividualPreferences
PrimaryReadings:
DL–Chapter4;JR-Chapter3;Varian–Chapter7
Inmosteconomicmodels,westartwithanagent'sutilityfunction.Theutilityfunctionbasicallymapsfrombundlesthattheagentmightchoose,totherealline.Theutilityfunctionisquiteconvenient:
itcanbemaximizedandmanipulatedusingmathematicaltools.Butthequestionis:
Isitvalidtoreduceasimple,real-valuefunction,somethingascomplicatedasanagent'spreferencesoverawidevarietyofbundles?
Whatdoesitreallymeanabouttheagent'spreferences?
Areweimposingsomehiddenordesirableassumptionswhenwetakethisapproach?
Inthislecture,wewilltrytoanswerthesequestionsbyanalyzingtherelationshipsbetweenaxiomsaboutanagent'spreferences,andthenestablishingtheexistenceofautilityfunctionthatrepresentstheagent'spreferences.
2.1TheConsumer'sPreferences
2.1.1ConsumptionSet
Welettheconsumptionset,X,representthesetofallalternatives,orcompleteconsumptionplans,thattheconsumercanconceive-whethersomeofthemwillbeachievableinpracticeornot.EveryelementofXiscalledaconsumptionbundleoraconsumptionplan.
∙Xcapturestheuniverseofallpossiblechoicesaconsumermayhave.Forthisreason,theconsumptionsetisalsoknownasthechoiceset.
∙Normally,XRm+-theentirenonnegativeorthantoftherealspaceRm.
∙WewillalwaysassumethatXisaclosedandconvexset.
2.1.2BasicProperties&AxiomsofPreferences
∙Forx,yX,whenwewritex
y,wemeanthat"theconsumerthinksthatthebundlexisatleastasgoodasbundley."Wecall
apreferencerelationonX.
∙Wesay,"xis(weakly)preferredtoy".
∙Itisclearthat
isabinaryrelationdefinedonX.
Asthefinalpurposeofintroducingapreferencerelationistoorderthesetofconsumptionbundles,weneedtoassumeanumberofaxioms.Theseaxiomsofconsumerchoiceareintendedtogiveformalmathematicalexpressiontofundamentalaspectsofconsumerbehaviorandaltitudestowardtheobjectsofchoice.
AXIOM1:
(Completeness)x,yX,(x
y)(y
x).(Note:
="or")
∙Tosatisfythecompletenessaxiom,thepreference
cannotbedefinedsothatx
yxjyj,j.(Reason:
itisonlyapartialordering.)
(Note:
Whilethisaxiomappearsinnocuous,incombinationwiththeusualconfinementoftheconsumptionsettotheconsumptionoftheindividualonly,itrulesoutexternalitiesinconsumption.)
AXIOM2:
(Reflexivity)xX,x
x.
AXIOM3:
(Transitivity)(x
y)&(y
z)x
z.(Note:
&="and")
Note:
∙Thefirstassumptionsaysthatanytwobundlescanbecompared,thesecondistrivial,andthethirdisnecessaryforanydiscussionsofpreferencemaximization:
forifpreferenceswerenottransitive,theremightbesetsofbundleswhichhadnobestelements.
Itisusefultoextendournotation:
∙Wewritexyandsaythatxisstrictlypreferredtoy.Wesometimealsowritenoty
x,meaningyisnotpreferredtox,whichisthesameasxy,givencompleteness.
∙Wewritex~yif(x
y)&(x
y)andsaythatxisindifferenttoy.
Examples:
(a)FiniteSet
∙IfXisafiniteset,thenapreferencerelationonXwillpartitionXintoafinitenumberofsubsetssuchthat
∙elementswithinasubsetareallindifferent;
∙Therewillbeastrictpreferenceforelementsfromdifferentsubsets.
(b)SummationOrdering:
∙LetX=Rm.
∙Definex
ytomeanthat
∙Itiseasytoshowthatthissummationorderingiscomplete,reflectiveandtransitive.
(c)LexicographicOrdering
∙LetX=Rm+.
∙x
yifandonlyif
∙either,thereexistssomejsuchthatxi=yifori
∙or,xi=yifor1im.
∙Essentially,thelexicographicorderingcomparesthecomponentsoneatatimebeginningwiththefirst,anddeterminestheorderingbasedonethefirstadifferenceisfound.
∙Thisimpliesthatthevectorwithgreatestcomponentisrakedthehighest.
Theabovethreeaxiomsarethebasicpropertiesofapreferencerelation.Anyrelationsatisfyingthese3axiomsiscalledanordering.Inordertohaveafunctionalrepresentation,wemayneedafewmoreaxioms(assumptions).(IfXiscountable,noadditionalaxiomisneeded.)
AXIOM4:
(Continuity)ForallyinX,thesets{x:
x
y}and{x:
y
x}areclosedsets.Itfollowsthatthesets{x:
xy}and{x:
yx}areopensets.
∙Thisassumptionisnecessarytoruleoutcertaindiscontinuousbehavior.
∙Itsaysthat,if(xi)isasequenceofconsumptionbundlesthatareallatleastasgoodasyandifthissequenceconvergestosomebundlex*,thenx*isatleastasgoodasy.
∙Thekeyconsequenceofcontinuityisasfollows:
ifyisstrictlypreferredtozandifxisbundlethatiscloseenoughtoy,thenxmustbestrictlypreferredtoz.
Examples
∙Summationorderingiscontinuous.
∙Lexicographicorderisdiscontinuous(seethefollowingdiagramonR2+)
x2
{(x1,x2)(1,1)}
1
1x1
AXIOM4A:
(StrongMonotonicity)Ifxyandxy,thenxy.
AXIOM4B:
(WeakMonotonicity)Ifxiyiforalli,thenx
y.
∙Weakmonotonicitysaysthat"atleastasmuchofeverythingisatleastasgood."Iftheconsumercancostlesslydisposeofunwantedgoods,thisassumptionistrivial.
∙Strongmonotonicitysaysthatatleastasmuchofeverygood,andstrictlymoreofsomegood,isstrictlybetter.Thisissimplysaysassumingthatgoodsaregood.
∙Ifoneofthegoodsisa"bad",suchasgarbageorpollution,thenstrongmonotonicitywillnotbesatisfied.Butwecaneasilygetaroundthisproblembyrespecifyingthegoodtobeabsenceofgarbage,orabsenceofpollution,whichwillnormallyleadtostrongmonotonicity.
AXIOM5:
(Local?
Nonsatiation)GivenanyxinXand>0,thenthereissomebundleyinXwith||x-y|| (Analternativedefinition: requiringthistoholdoversomesetthatcontainthesetdefinedbytherelevantbudgetconstraint.) ∙Localnonsatiationsaysthatonecanalwaysdoalittlebitbetter,evenifoneisrestrictedtoonlysmallchangeintheconsumptionbundle. ∙Itcanbeshownthatstrongmonotonicityimplieslocalnonsatiationbutnotviceversa. ∙Keyconsequenceoflocalnonsatiationrulesout"thick"indifferencecurves. Thefollowingtwoassumptionsareoftenusedtoguaranteenicebehaviorofconsumerdemandfunctions. AXIOM6A: (Convexity)Givenx,y,zXsuchthatx zandy z,thentx+(1-t)y zforall0t1. AXIOM6B: (StrictConvexity)Givenxy,zXsuchthatx zandy z,thentx+(1-t)yzforall0 ∙Convexityimpliesthatanagentprefersaveragetoextremes. ∙Convexityisageneralizationoftheneoclassicalassumptionof"diminishingmarginalratesofsubstitution." Beforewemoveonthefunctionalrepresentationofthepreferencerelation,wemustemphasizethattheapreferencerelationisanordinal,ratherthancardinal,concepteventhoughwehaveattemptedtoincorporateadditionalstructuresbyimposingsomeoftheaboveassumptions. 2.2UtilityFunctions Autilityfunctionisareal-valuedfunctionudefinedontheconsumptionsetXsuchthatpreferencerankingsarepreservedbythemagnitudeofu.Thatis,autilityfunctionuhasthepropertythatgivenanytwoelementsx,yinX,u(x)u(y)ifandonlyifx y. Butnotallpreferencerelationscanberepresentedbyutilityfunctions.Arathergeneralresultisthatanycontinuouspreferenceorderingcanberepresentedbyacontinuousutilityfunction.Thisisaverydifficultresulttoprove(Debreu(1959)).(Moreover,whileanycontinuousorderingisalwaysrepresentable,continuityisnotnecessary.Thenecessaryandsufficientconditionsforrepresentationisrathertechnical;seeNg1979/83,App.1B.)Wewillfocusonasomewhatsimplerresult-theonethatcanbeprovedconstructively.Themainideasare: ∙Weselectarbitraryfixedlinethatcutsalloftheindifferencecurves(orsurfaces). ∙Onceutilityisdefinedalongthisline,theutilityofanyotherpointisfoundbytracingtheappropriateindifferencecurvetothelineandusingtheutilityvaluethere. ∙Theassumptionofstrongmonotonicityguaranteesthattheindifferencecurvesexitandthatanylineoftheforme,>0ande>0,cutsthemall. ExistenceofUtilityFunctions ∙SupposethatareferencerelationonX=Rm+iscomplete,reflexive,transitive,continuous,andstronglymonotone.Thenthereexistsacontinuousutilityfunctionu: Rm+Rwhichrepresentsthepreferencerelation. x2 e x1 Proof LetebethevectorinRm+consistingofallones.Thengivenanyvectorx,let u(x)=suchthatx~e. Wenowneedtoshowthatu(x)iswell-defined,i.e.,itexistsandunique. Definethefollowingtwosets: A={: 0,e x} B={: 0,x e} Thenbystrongmonotonicity,Aisnonempty.Biscertainlynonemptysince0B.BothAandBareclosedbythecontinuityassumption.Ontheotherhand,bythecompletenessassumption,weknowthatevery(0)mustbelongtoAB,thatis,AB=R+. Notethatif*AB,then*e~xsothatwecanletu(x)=*.Therefore,weneedtoprovethatABisnonempty. Bymonotonicity,itfollowsthatAimpliesthat'Aforall'.SinceAisclosedsubsetofR+,itmustbeinaformofclosedinterval[*,+),whichimpliesthatB=[0,*]sinceBisanonemptyclosedsetsuchthatAB=R+. Wenowhavetoprovethatthevalue*mustbeunique.Let1e~xand2e~x.Thenitisclearthat1e~1e(transitivitypropertyof"~").Bystrongmonotonicity,itmustbethecasethat1=2. Letusprovethattheabove-definedutilityfunctionactually
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Topic Individual Preferences