Steam properties.docx
- 文档编号:4043129
- 上传时间:2022-11-27
- 格式:DOCX
- 页数:13
- 大小:620.51KB
Steam properties.docx
《Steam properties.docx》由会员分享,可在线阅读,更多相关《Steam properties.docx(13页珍藏版)》请在冰豆网上搜索。
Steamproperties
30/10/2014
Steamandsilencers
Summary
2methodscanbeusedtodeterminetheparametersofthesonicneck :
∙AgraphicalmethodwithEXCELfromthesteamtables(saturatedsteam)byusingtheratioxwhichistheratioofthemassofthegaseousphasedividedbythemassofthemixture.
∙Amethodusingrelationshipssimilartothoseofperfectgases,withanisentropiccoefficientkinsteadof
.
TheygivethesameresultsastheBertincalculationofatypicalcase.
Then,concerningthevelocityofthejetdownstreaminfinite(wherethepressureistheatmosphericpressure):
Wehavetoconsiderthatitisanadiabaticexpansion.
Onecanfindverydetailedsteamtablesonthefollowingsite:
sitehttp:
//webbook.nist.gov/chemistry/fluid.
Tabledesmatières
1Goal3
2Steamtable3
3Caseofstudy4
3.1Personalinterpretation5
4Steam5
4.1Enthalpydiagrams5
4.2Isentropiccurves6
4.3Relationshipbetweenpressureanddensity7
4.4Isentropicexpansionrelationships8
4.4.1Zeunerrelationship8
4.4.2Eulerequation8
4.4.3Soundspeeddefinition8
4.4.4Continuity9
4.4.5Additionallaws9
5Backtothecasestudy10
5.1Usingisentropicrelationships10
5.2CurrentBertincalculation11
5.3Downstream12
1Goal
ExplainthethermodynamicalbehaviourusedtocomputeanddesigntheBertinsilencers.
2Steamtable
Websitewhereonecandownloadveryaccuratedata:
http:
//webbook.nist.gov/chemistry/fluid/
http:
//webbook.nist.gov/cgi/fluid.cgi?
TLow=100&THigh=300&TInc=1&Applet=on&Digits=5&ID=C7732185&Action=Load&Type=SatP&TUnit=C&PUnit=MPa&DUnit=kg%2Fm3&HUnit=kcal%2Fmol&WUnit=m%2Fs&VisUnit=uPa*s&STUnit=N%2Fm&RefState=DEF
3Caseofstudy
Theimportantparametersforthesilencerdesignare :
∙Thetotalsectionnecessaryfortheflowrateattherequiredpressure(sonicneck)
∙Thejetspeedatthedownstreaminfiniteconditionwhichisusedtocalculatetheacousticpowerforafreejet.
Wechooseanumericalapplicationforwhichwehavetheresultsofcalculation:
∙NISteamDumpSilencers-DumpingModuleandAcousticsDimensioning-Réf.:
05483-005-DC002-A
∙Pages5et6,itiswritten:
∙
∙
∙
3.1Personalinterpretation
Asthevalvebehaviourisunknown,wejustconsidertheupstreamconditions(3)ofthevalve
Thenweadmitthattheexpansionisadiabatic(isentropic)for2reasons:
ØAsthesteamvelocityattheneckwillbehigh(soundspeed)weadmitthatthereisnoheatexchangewithenvironment;
ØWehavesimplerelationshipsinthiscase.
Thenwemanagetohaveasonicflowattheneck.
Then,weadmitthatattheoutlet,thepressuredecreasestoreachtheatmosphericpressureinthefarfield.Wehavestillanadiabaticexpansionandwecancalculatethesteamvelocityattheatmosphericpressure.
4Steam
Thesteamisnotaperfectgas.
4.1Enthalpydiagrams
Weusetheenthalpydiagramsversusentropyforsaturatedsteambecausethetransformationisassumedtobeisentropic(adiabatic).
Above:
Enthalpyforvariousxcoefficients.
Thecurvex=1isthesaturatedsteamcurve.
Onthisgraph:
Theinitialenthalpyis2765kJ/kg.Thenwehaveanisentropicexpansionuptoh1.Thetitrexis0,9.Itmeansthatthecorrespondingsteammixturecontains90%ofgas(inmass).
4.2Isentropiccurves
Theyareeasytobuildwhentheenthalpydecreasesbecausewecanusethetitrex.
Fortheentropy,wehave:
Where
istheentropyoftheliquidphaseand
theentropyofthegaseousphase.
Itisthesamewithenthalpyandvolume(inm^3/kg).
Wecaneasilycomputethexcoefficientcorrespondingtotheentropywherex=1whichistheentropyforsaturatedsteam.Forx=1wehave:
Thereforeforeachlineofthetablewecancompute:
Thenwecomputeforeachline:
Thepressureandtemperaturedonotchangewhenxchanges.
NotaBene:
xcannotexceed1.
4.3Relationshipbetweenpressureanddensity
Thankstothesteamtable,wehavenowonanisentropiccurvethevaluesofthedensityandpressureofthemixture.Wecanseethat:
Hereafteraresomeisentropiccoefficientsforsomevaluesoftheentropy:
S(kJ/kg/°K)
k
6,9894
1,1376
6,014
1,1213
5,7739
1,1093
5,5026
1,0909
5,2915
1,0733
4.4Isentropicexpansionrelationships
Inthefollowingequationsweneverassumethatsteamisaperfectgas.
4.4.1Zeunerrelationship
ONLYifthetransformationisadiabatic(isentropic):
Theenthalpyishanduisthefluidvelocity.
Betweentheinitialstateandanycurrentpoint:
Wederivethisrelationship:
Infact,itisthethermodynamicalequationintheparticularcaseofanadiabatictransformation.
4.4.2Eulerequation
Withoutexternalforceswork :
UsingZeunerequation,wehavealso:
4.4.3Soundspeeddefinition
Thesoundspeedisgivenbythepartialderivativeofpressureversusdensityinisentropicconditions :
4.4.4Continuity
Itistheconservationofthemass,andthusofthemassflowrate:
WhereAisthesection.
Therefore:
4.4.5Additionallaws
Wecanobtainadditionallawswhichareverysimilartothoseforperfectgases.
Using :
Wherekdependsupontheentropy(butisconstantforagivenentropy)weobtainafterboringcalculationsthefollowingrelationships :
ØWhenthedownstreamvelocityisneglected:
Massflowrateforasubsonicflow:
Criticalpressureforasonicflowrate:
Velocityattheneck(soundvelocity) :
Massflowrateforasonicflow:
5Backtothecasestudy
Inlet(i)
DumpingModule(3)
Sonicneck(c)
Outlet(o)
Pi=7.6MPaabs
Ti=292°C
Hi=2765kJ/kg
P3=4.56MPaabs
T3=258°C
Tc
Po=0.1MPaabs
To=145°C
Ho=Hi=2765kJ/kg
Nota:
V3isabout80m/s.Thecondition(V3)²/2< Upstreamwehave: Pi=7.6MPaabs Ti=292°C Hi=2765kJ/kg 5.1Usingisentropicrelationships ∙Necksection : Theequation Gives: With: k= 1,1213 cte1= 0,61543621 cte2= 1,05718192 P0= 4,56 Mpa P0= 4560000 Pa rho_0= 23,013 kg/m^3 For: Qm= 90 kg/s Wefind: A= 1,3884E-02 m^2 ∙Criticalpressure(atthesonicneck): Pc/P0= 0,580 P0/Pc= 1,723 Pc= 2,646 Mpa ∙Soundspeed: Wefind: c^2= 2,095E+05 c= 457,69 m/s 5.2CurrentBertincalculation Itgivesthesameresult. 5.3Downstream Weusetherelationship: Attheatmosphericpressure: k= 1,1213 P0= 4,56 Mpa P0= 4560000 Pa rho_0= 23,013 kg/m^3 Uj= 1113,56138 m/s
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Steam properties