美国数学建模A题论文 最佳布朗尼锅The Ultimate Brownie Pan.docx
- 文档编号:3823241
- 上传时间:2022-11-25
- 格式:DOCX
- 页数:16
- 大小:730.18KB
美国数学建模A题论文 最佳布朗尼锅The Ultimate Brownie Pan.docx
《美国数学建模A题论文 最佳布朗尼锅The Ultimate Brownie Pan.docx》由会员分享,可在线阅读,更多相关《美国数学建模A题论文 最佳布朗尼锅The Ultimate Brownie Pan.docx(16页珍藏版)》请在冰豆网上搜索。
美国数学建模A题论文最佳布朗尼锅TheUltimateBrowniePan
TheUltimateBrowniePan
Summary
Thebrowniesaredelicious,butselectingpansplaysanimportantroleinordertobaketheonesthattastebest.Rectangularpancanmakefulluseofthespaceyetwiththeuneventemperaturedistribution,whilecircularpansareonthecontrary,whichisquitedisturbing.Therefore,wearetaskedtodevelopamodeltofindoutthebestchoicewiththemostuniformtemperaturedistributionandthemostpansintheoven.
WethinkoftheheatconductionequationandapplyittoModelOne.Inordertosimplifytheproblem,butnottodivorcefromreality,wemakeareasonableassumption.Whenconsideringtheproblemofheatconductionunderthestateofthermalequilibriuminatwo-dimensionalplane,wegetthesimulationdiagramsoftemperaturedistributionofdifferent-shapedpansundertheassumedcircumstancewiththeaidofPDEtoolofMATLAB.
AsforModelTwo,weconverttheproblemofoptimizationofpan’snumbersintotheoneofspaceutilization.Thepanwithmaximumutilizationofspaceiscorrespondingtothelargestnumberofbakingpans.Weintroducethetemperaturevariancetocharacterizetheuniformityofthetemperaturedistribution.Thebestoptionshouldtakethetwofactorsaboveintoaccount.Weights(p)and(1-p)areassignedtoillustratehowtheresultsvarywithdifferentvalues.Herewecreativelyintroducetheconceptofrelativeperformance;itmeansthatwescorethebakingpansbyexaminingtherelativedegreesofspaceutilizationandtheunevennessoftemperaturedistribution.Fromthescores,wecanfindoutthebestshape.
KeyWord:
HeatConductionEquation,Variance,Spaceutilization,RelativelyComprehensivePerformance
1Introduction
Abrownieisasquareorbarofveryrichchocolatecakeusuallywithnuts.Owingtoitstastyflavorandconveniencetobetakenalong,itenjoysagreatpopularityinwesterncountries.Inrecentlyyears,itiswidespreadinChinanow.Aplentyofgirlsliketocookthedessertsthemselves,butintheprocessofmakingbrownies,theyareconfrontedwithadisturbingproblem.
Whenbakinginarectangularpan,heatisconcentratedinthefourcornersandtheproductgetsovercookedatthecorners(andtoalesserextentattheedges).Inaroundpantheheatisdistributedevenlyovertheentireouteredgeandtheproductisnotovercookedattheedges.However,sincemostovensarerectangularinshape,usingroundpansisnotefficientwithrespecttousingthespaceinanoven.
Themostcommonlyusedshapesofpansinthemarketaresquareandround.Inordertomakefulluseofthespaceoftheovenwithtakingtheevendistributionofheatintoaccount,shapesbetweensquareandround(regularpolygonmainly)maypresentuswithabetteroutcome.Inthemeantime,theselectionofthebesttypeisalsoinfluencedbythewidthtolengthration,theareaofthepan,themaximumutilizationofspaceandhowtobalancetheweightsoftheevendistributionofheat.Consequently,wearetaskedtodevelopamodeltohelptheminthisdilemmaandapplyittotheselectionofthemostappropriateshape.
2Assumptions
ØWeonlystudypanprobleminthetwo-dimensionaltemperaturedistribution,donotconsiderthethree-dimensionalcase;
ØThereisnoheatsourceinthepan,norheatexchangewiththeoutsideworld;
ØPot temperature tends to equilibrium steady state, it does not change with time;
ØInthesteadystate,thetemperatureinsidetheoventemperature,theedgeofthecakeandthehotplatetemperatureisconsistent;
ØBakeware and oven are made of iron;
ØOven temperature equilibrium within 180 degrees Celsius.
3ParameterDefinitions
X
Lengthofeachinapolygon
μ
RatioofWandL
a
NumberofpansinalengthofL
b
NumberofpansinalengthofW
N
Maximumnumberofpansinanoven
S
Varianceofheatinapan
Q
Relativeoccupationofspace
U
Relativeinhomogeneousdegree
R
Relativeperformancescore
A
Areaofapan
W
Widthofapan
L
Lengthofapan
p
Weightgiventooccupationofspace
4ModelDevelopment
4.1Distributionofheatacrosstheouteredge
Ifthetemperatureofeachplaceinanobjectisnotthesamewitheachother,thentheheatwillflowfromthepartsofhighertemperaturetothepartsoflowerones,asiscalledheatconduction.Sincetheconductionofheatisshownasthechangesoftemperaturevarywithtimeandlocation,thesolutiontotheproblemofheatconductionisattributedtothedistributionoftemperatureintheobject.Weregardthepanasahomogeneousandisotropicheatconductor;thedifferentialequationofheattransferprocessinthetwo-dimensionalplanethatitmeetsisasfollow:
(4.1)
Ifweconsidersteadystationarytemperaturefield,wherethetemperatureoftheobjectintheheatconductionequationtendstoastateofequilibriumandthetemperature(u)hasnothingtodowithtime(t),sothat
=0,theequation
(1)becomestheLaplaceEquationnow,as
=0(4.2)
Thisshowsthatthetemperature(u)ofthestationarytemperaturefieldalsomeetsLaplaceEquation.
TheLaplaceEquation,asadescriptionofphysicalphenomenasuchasstabilityandbalance,cannotmentiontheinitialconditions.Asfortheboundaryconditions,weassumethatwhenthebakingtemperaturetendstoastateofdynamicbalance,theheatofcakeisthesamewiththeironpan,soitmeetsthefirstboundaryvalueproblem,whichistheDirichletProblem.
Inthetwo-dimensionalplane,theproblemboilsdowntothedefinitesolutiontothetwo-dimensionalLaplaceEquationwithinthecircledomainwhenthepaniscircular.Assumingthattheradiusisrepresentedbyrandthetemperatureisrepresentedbyu,thentheradiusofthecircleis
theproblemisshownas
(4.3)
Weassumethatinthesteadystate,thetemperatureinsidetheoventemperature,theedgeofthecakeandthehotplatetemperatureisconsistentboundaryconditionsareobtainedbyDirichletProblemconditionsas
(4.4)
u(0,
)=limitedvalue(4.5)
ThePDEtooloftheMATLABisusedtogetthefollowingimage.
Figure4-1Distributionofheatincircle
Fromtheimageshownabove,wecanfindtheheatdistributionofthecircle-fromtheinsideout,thetemperatureisgraduallyincreased,withthetemperatureattheedgesappearsasthemaximumandeven-distributed.
Next,weconsiderthecaseofarectangle.TheproblemisconvertedintothedefinitesolutiontotheLaplaceEquationwithintherectangulardomainwhenthepanisarectangle.Wesolvetheproblemintherectangularcoordinatesystem,withwidthrepresentedbyxandlengthrepresentedbyy,supposingthewidthoftherectangleisa,thelengthofitisb,andustandsfortemperature,wecangettheLaplaceEquationas
=0
(4.6)
Thesameasabove,inthesteadystate,thetemperatureinsidetheoventemperature,theedgeofthecakeandthehotplatetemperatureisconsistent;boundaryconditionsareobtainedbyDirichletProblemconditions.
ThePDEtooloftheMATLABisusedtogetthefollowingimage.
Figure4-2Distributionofheatinrectangle
Fromtheimageabove,wecandrawtheconclusionoftheheatdistributionoftherectanglefromtheinsideout;thetemperatureisgraduallyincreasedaswell.Thetemperaturedistributionoffouredgesoftherectangleisnoteven,itincreasesgraduallyfromthemiddletothecorners.However,thetemperaturedistributionsofthecorrespondingsidesarethesame,andthemaximumvalueofthefinaltemperatureappearedinthefourcornersoftherectangle.
Withthecomparisonofthetwocases,wefindthatthetemperaturedistributionofthecircleismoreuniform,sowesuspectthatthetemperaturedistributionofcircularpanisthemostuniformoneamongallkindsofshapes.Inordertoverifyourconjecture,weusetheMATLABsoftwaretofindoutthetemperaturedistributionofregularhexagonandregularoctagonunderthecircumstancethattheboundaryconditionsremainunchanged.Theimagesareasfollows.
Figure4-3Distributionofheatinregularhexagon
Figure4-4Distributionofheatinregularoctagon
Finally,wedrawtheconclusionthatsurelythetemperatureofthearbitrarypolygonisnotuniform,andthemaximumtemperaturesallappearinthecorners.Whenthenumberofpolygonedgesismorethantwohundred,approximatelytheshapecanberegardedasacircle.Itmeansthatthecloseritgetstoacircle,themoreuniformthetemperaturedistributionwillbe.Consequently,theshapewiththemostuniformdistributionoftemperaturewillbethecircle.
4.2Maximizenumberofpans
Whenconsideringtheissueofdifferentshapesarrangedinapanonthegrill,combinedwiththeactualsituation,westudythecasesthatthebakewareisasquare,hexagonal,octagonal,andcircularshape.WeassumethatthewidthoftheovenisW,thelengthofitisL,andwehavetheequationthatW/L=μ.SupposethatthesidelengthoftheregularpolygonisX,itstandsfortheradiusinthecircle.
Forthisproblem,wedivideitintotwostepstodescribethemaximizationofthenumberofpans.Firstofall,wetrytofindthelargestnumbersofsidesinaregularpolygonthattheoven’slengthLandwidthWcanaccommodate,andsetthemasp(L)andm(W),sothenumberofpanswhichcanbecontainedbythewholeovenplaneis
N=p*m(4.7)
Figure4-5
Squarepan:
Inarectangularoven,squarebakewarescanbeplacedliketheexampleinthepicture.WeassumethatthelengthofsquareisX,soeverybakeware'sareais"X2=A"Whenitcomestothesidelengthoftheovenplane,thelongsideaccommodateasmuchasp=[
]lengthofsquare,whiletheshortsidem=[
].“[ ]”isstandforroundingarithmetic.sowecanworkoutthemaxnumberofSquarebakewarethatovenplanecan
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 美国数学建模A题论文 最佳布朗尼锅 The Ultimate Brownie Pan 美国 数学 建模 论文 最佳 布朗