圆柱和圆锥教学计划及教案.docx
- 文档编号:3525118
- 上传时间:2022-11-23
- 格式:DOCX
- 页数:12
- 大小:20.41KB
圆柱和圆锥教学计划及教案.docx
《圆柱和圆锥教学计划及教案.docx》由会员分享,可在线阅读,更多相关《圆柱和圆锥教学计划及教案.docx(12页珍藏版)》请在冰豆网上搜索。
圆柱和圆锥教学计划及教案
621《圆柱和圆锥》单元教学计划(第一稿)
黄村小学六年级备课组黄智培
一、本单元知识框架
圆柱和圆锥
面的旋转
圆柱的表面积
圆柱的体积
圆锥的体积
二、单元学习内容的前后联系
已学过的相关内容:
1、直观认识长方体、正方体、圆柱。
2、长方形、正方形的认识及特征。
3、面积的认识,长方形、正方形的面积
4、认识平行四边形、三角形与梯形。
5、三角形的特征。
6、平行四边形、三角形与梯形的面积。
7、长方体(正方体)的认识。
8、长方体(正方体)的表面积和体积。
9、圆的认识
10、圆的周长。
11、圆的面积。
---------→
本单元的主要内容:
1、面的旋转、圆柱和圆锥的认识。
2、圆柱的表面积与体积。
3、圆锥的体积。
------------→
三、学生学习情况分析:
根据学生学习长方体、正方体的表面积和体积,圆的周长和面积时,所反映出来的情况来看:
1、学生的空间观念较为薄弱。
因此,在教学时重视发展学生的空间观念操作与思考、想象相结合,清晰地认识图形、探索图形特征。
2、学生对于类比、转化等数学思想方法比较模糊。
为此,在教学圆柱的体积时,着重引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。
3、学生在应用已学的知识进行解决生活中的数学问题是不够灵活的。
如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的面积等。
因此,将以大量的基础知识进行练习,巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。
四、单元教学目标
1、结合具体情境和操作活动,引导学生整体把握“点、线、面、体”之间的联系。
2、从多种角度探索圆柱和圆锥的特征。
3、探索圆柱表面积的计算方法,发展空间观念。
4、经历圆柱和圆锥体积计算方法的探索过程,体会“类比”的思想。
5、在解决实际问题中用活所学知识,感受数学与生活的联系。
五、教学重点、难点
1、圆柱和圆锥各部分的名称,体会“点、线、面、体”之间的关系。
2、会求圆柱的侧面积和表面积,理解圆柱侧面积公式的推导过程。
3、掌握圆柱和圆锥体积的计算公式,会求圆柱和圆锥的体积,理解圆柱体和圆锥积公式的推导过程。
六、单元评价要点
1、会计算圆柱的侧面积和表面积。
2、会计算圆柱的体积。
3、会计算圆柱的体积。
4、能解决与储蓄有关的实际问题。
七、各小节教学目标及课时安排
本单元计划课时数:
16节
教学内容
教学目标
计划
课时
授课
时间
备注
面的旋转
1、通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特称,知道圆柱和圆锥各部分的名称。
2、通过观察、动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。
2
圆柱的表面积
1、通过观察、操作等活动,知道圆柱的侧面展开后是一个长方形,加深对圆柱特征的认识,发展空间观念。
2、结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
3、能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中的一些简单问题。
4
圆柱的体积
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历“类比猜想——验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3
圆锥的体积
1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历“类比猜想——验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并会解决一些简单的实际问题。
3
综合练习
4
合计
16
各课时的教学设计:
面的旋转
教学目标:
1.通过初步认识圆柱和圆锥使学生感受到数学与生活的密切联系。
2.通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。
3.通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥的各部分名称。
教学重点:
1、联系生活,在生活中辨认圆柱和圆锥体的物体,并能抽象出几何图形的形状来。
2、通过观察,初步了解圆柱和圆锥的组成及其特点。
教学难点:
通过观察,初步了解圆柱和圆锥的组成及其特点。
教学过程:
一、创设情境
我们学过那些平面图形?
二、新知探究
活动一
课件显示:
将自行车后轮架支起,在后车车条上系上彩带。
转动后车轮,观察并思考彩带随着车轮转动后形成的图形是什么?
学生根据发现的现象(彩带随着车轮的转动形成了圆)说明自己的想法,并体验:
点动成线
活动二
观察书本主题图,你发现了什么?
学生发现:
风筝的每一个节连起来看,形成了一个长方形;雨刷器扫过后形成一个半圆形(课件显示)
学生体验:
线动成面
活动三
观察书本主题图,(课件显示):
用纸片和小棒做成下面的小旗,快速的旋状小棒,观察并想象旋转后形成的图形,再连一连。
1、学生实际动手操作,然后根据想象的图形连线
1——1(圆柱)2——3(球)3——4(圆锥)4——2(圆台)
2、介绍:
圆柱、圆锥、球的名称。
小结:
我们学过的长方体、正方体都是由平面围成的立体图形,今天我们学习的圆柱、圆锥和球也是立体图形,只是与长方体、正方体不同,围成的图形上可能有曲面。
活动四、找一找
请你找一找我们学过的立体图形
活动五、说一说
圆柱与圆锥有什么特点?
和小组的同学互相说一说
活动六、认一认
小结:
(以圆柱和圆锥的特征进行)
三、知识拓展练习提高
1.找一找,下图中哪些部分的形状是圆柱或者圆锥?
(课本第4页练一练1)
再和同学们说一说生活中哪些物体的形状是圆柱或者圆锥的。
2.下面图形中是圆柱或圆锥的在括号里写出图形的名称,并标出地面的直径和高。
(课本第4页练一练3)
3.想一想,连一连(课本第4页练一练4)
圆柱的表面积
教学目标:
1.能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,使学生感受到数学与生活的密切联系
2.通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。
3.结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
教学重点:
使学生认识圆柱侧面展开图的多样性。
教学难点:
学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
教学过程:
一、口算。
3.14×53.14×203.14×103.14×73.14×9
3.14×303.14×23.14×603.14×83.14×40
二、创设情境,引起兴趣。
拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?
想一想工人叔叔做这个茶叶罐是怎样下料的?
(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?
(说说自己的猜想)
三、自主探究,发现问题。
活动一研究侧面积(课前预习、实践,然后学习时交流)
1、独立操作:
利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。
2、观察对比:
观察展开的图形各部分与圆柱体有什么关系?
3、小组交流:
能用已有的知识计算它的面积吗?
4、小组汇报。
(选出一个学生已经展开的图形贴到黑板上)
重点感受:
圆柱体侧面如果沿着高展开是一个长方形。
(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?
(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
活动二研究表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。
学生测量,计算表面积。
2、圆柱体的表面积怎样求呢?
小结:
圆柱的表面积 = 圆柱的侧面积+底面积×2
3、动画:
圆柱体表面展开过程
三、实际应用
1、质疑:
书本第7页。
2、填空
(1)圆柱的侧面沿着高展开可能是( )形,也可能是( )形。
第二种情况是因为( )
(2)要求一个圆柱的表面积,一般需要知道哪些条件( )
3、书本第8页练一练1。
4、提高题:
课本第8页练一练2。
5、拓展题:
一个圆柱的侧面积展开图是正方形,这个圆柱的高是12.56厘米,则这个圆柱的底面直径是多少?
圆柱的体积
教学目标:
1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。
2.通过圆柱体体积公式的推导,培养学生的分析推理能力。
3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学重点:
圆柱体体积的计算
教学难点:
圆柱体体积公式的推导
教学过程:
一、复习
1、求下面各圆的面积(回答)。
(1)r=1厘米;
(2)d=4分米; (3)C=6.28米。
要求说出解题思路。
2、想一想:
学习计算圆的面积时,是怎样得出圆的面积计算公式的?
指出:
把一个圆等分成若干等份,可以拼成一个近似的长方形。
这个长方形的面积就是圆的面积。
3、提问:
什么叫体积?
常用的体积单位有哪些?
4、已知长方体的底面积s和高h,怎样计算长方体的体积?
5、小结:
二、探索新知
1.根据学过的体积概念,说说什么是圆柱的体积。
(板书课题)
2.怎样计算圆柱的体积呢?
我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。
3.公式推导。
(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。
(切拼转化)
(3)探索求圆柱体积的公式。
(教具的演示)
(4)讨论并得出结果。
你能根据这个实验得出圆柱的体积计算公式吗?
为什么?
让学生再讨论:
(5)小结:
圆柱体通过切拼,圆柱体转化成近似的长方体。
这个长方体的底面积与圆柱体的底面积 相等,这个长方体的高与圆柱体的高相等。
因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:
圆柱的体积=底面积×高 (板书:
圆柱的体积=底面积×高)用字母表示:
圆柱的体积是怎样推导出来的?
计算圆柱的体积必须知道哪些条件?
4.教学算一算(课本第11页)
教学“试一试”
小结:
求圆柱的体积,必须知道底面积和高。
如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?
如果知道d呢?
知道C呢?
知道r、d、C,都要先求出底面积再求体积。
三、巩固练习
1、书本第11页的练一练1。
2、书本第11页的试一试。
3、拓展题:
李叔叔买了一个圆柱形花瓶,底面半径10厘米,高20厘米,他想把它包装送人,能不能把它放入一个容积为6立方分米的盒子里进行包装?
为什么?
四、课堂小结
这节课学习了什么内容?
圆柱的体积怎样计算,这个公式是怎样得到的?
指出:
这节课,我们通过转化,把圆柱体切拼转化成长方体。
圆锥的体积
教学目标:
1、使学生理解求圆锥体积的计算公式。
2、会运用公式计算圆锥的体积。
3、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。
教学重点圆锥体体积计算公式的推导过程。
教学难点正确理解圆锥体积计算公式。
教学过程:
一、铺垫孕伏
1、计算下面各圆柱的体积。
(给出的是直观图)
2、小结:
3、导入:
同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?
这节课我们就来研究这个问题。
(板书:
圆锥的体积)
二、探究新知
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方。
老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和水。
把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验。
学生汇报实验结果。
3、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3。
5、推导圆锥的体积公式:
用字母表示圆锥的体积公式。
板书:
6、 思考:
要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是( )
圆锥的底面积是10,高是9,体积是( )
8、小结:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3。
三、巩固练习
1、书本第15页练一练1。
2、书本第15页试一试。
3、书本第16页3。
4、提高题:
一个圆锥形的沙滩,它的占地面积为12平方米,高是1.5米。
每立方米的沙重1.7吨。
用载重为2吨的汽车把这堆沙运走,几次运完?
四、全课小结
通过本节的学习,你学到了什么知识?
(从两个方面谈:
圆锥体体积公式的行四边形的面积与高成正比例。
(也可以用公式进行说明)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆柱 圆锥 教学计划 教案