高考数学冲刺 逐提特训专题1 12+4分项练2 数 列学生试题.docx
- 文档编号:3419511
- 上传时间:2022-11-22
- 格式:DOCX
- 页数:8
- 大小:50.55KB
高考数学冲刺 逐提特训专题1 12+4分项练2 数 列学生试题.docx
《高考数学冲刺 逐提特训专题1 12+4分项练2 数 列学生试题.docx》由会员分享,可在线阅读,更多相关《高考数学冲刺 逐提特训专题1 12+4分项练2 数 列学生试题.docx(8页珍藏版)》请在冰豆网上搜索。
高考数学冲刺逐提特训专题112+4分项练2数列学生试题
(二)数 列
1.(2019·全国Ⅲ)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3等于( )
A.16B.8C.4D.2
2.(2019·榆林模拟)在等差数列{an}中,其前n项和为Sn,且满足a3+S5=12,a4+S7=24,则a5+S9等于( )
A.24B.32C.40D.72
3.(2019·肇庆检测)记Sn为等差数列{an}的前n项和,公差d=2,a1,a3,a4成等比数列,则S8等于( )
A.-20B.-18C.-10D.-8
4.(2019·河南百校联盟考试)已知等差数列{an}满足a1=32,a2+a3=40,则{|an|}的前12项之和为( )
A.-144B.80C.144D.304
5.(2019·毛坦厂中学联考)已知等差数列{an}满足a3=3,a4+a5=a8+1,数列{bn}满足bnan+1an=an+1-an,记数列{bn}的前n项和为Sn,若对于任意的a∈[-2,2],n∈N*,不等式Sn<2t2+at-3恒成立,则实数t的取值范围为( )
A.(-∞,-2]∪[2,+∞)B.(-∞,-2]∪[1,+∞)
C.(-∞,-1]∪[2,+∞)D.[-2,2]
6.(2019·淄博实验中学诊断)已知数列{an}的前n项和为Sn,a1=2,Sn+1=2Sn-1(n∈N*),则a10等于( )
A.128B.256C.512D.1024
7.(2019·南充质检)已知数列{an}满足a1=0,an+1=
(n∈N*),则a56等于( )
A.-
B.0C.
D.
8.《张丘建算经》是中国古代数学史上的杰作,该书中有首古民谣记载了一数列问题:
“南山一棵竹,竹尾风割断,剩下三十节,一节一个圈.头节高五寸①,头圈一尺三②.逐节多三分③,逐圈少分三④.一蚁往上爬,遇圈则绕圈.爬到竹子顶,行程是多远?
”(注释:
①第一节的高度为0.5尺;②第一圈的周长为1.3尺;③每节比其下面的一节多0.03尺;④每圈周长比其下面的一圈少0.013尺)问:
此民谣提出的问题的答案是( )
A.72.705尺B.61.395尺
C.61.905尺D.73.995尺
9.已知数列{an}是各项均为正数的等比数列,Sn是其前n项和,若S2+a2=S3-3,则a4+3a2的最小值为( )
A.12B.9C.6D.18
10.已知数列{an}的通项公式为an=2n(n∈N*),数列{bn}的通项公式为bn=3n-1,记它们的公共项由小到大排成的数列为{cn},令xn=
,则
的取值范围为( )
A.[1,2)B.(1,e)
C.
D.
11.(2019·成都模拟)在正项等比数列{an}中,a5=
,a6+a7=3.则满足a1+a2+a3+…+an>a1a2a3…an的最大正整数n的值为( )
A.10B.11C.12D.13
12.(2019·烟台模拟)对于任意实数x,符号[x]表示不超过x的最大整数,例如[3]=3,[-1.2]=-2,[1.2]=1.已知数列{an}满足an=[log2n],其前n项和为Sn,若n0是满足Sn>2018的最小整数,则n0的值为( )
A.305B.306C.315D.316
13.(2019·全国Ⅲ)记Sn为等差数列{an}的前n项和.若a1≠0,a2=3a1,则
=________.
14.(2019·北京朝阳区模拟)天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围为扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是________;上、中、下三层坛所有的扇面形石块数是________.
15.(2019·东北三省四市模拟)已知数列{an}中,a1=2,an+1=
(n∈N*),则
=________.
16.(2019·钟祥模拟)对于实数x,[x]表示不超过x的最大整数,已知正数数列{an}满足Sn=
,n∈N*,其中Sn为数列{an}的前n项和,则
=________.
数学核心素养练习
一、数学抽象、直观想象
素养1 数学抽象
通过由具体的实例概括一般性结论,看我们能否在综合的情境中学会抽象出数学问题,并在得到数学结论的基础上形成新的命题,以此考查数学抽象素养.
例1 (2019·全国Ⅱ)设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1).若对任意x∈(-∞,m],都有f(x)≥-
,则m的取值范围是( )
A.
B.
C.
D.
1.如图表示的是一位骑自行车和一位骑摩托车的旅行者在相距80km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:
①骑自行车者比骑摩托车者早出发3h,晚到1h;
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者在出发1.5h后追上了骑自行车者;
④骑摩托车者在出发1.5h后与骑自行车者速度一样.
其中,正确信息的序号是________.
素养2 直观想象
通过空间图形与平面图形的观察以及图形与数量关系的分析,通过想象对复杂的数学问题进行直观表达,看我们能否运用图形和空间想象思考问题,感悟事物的本质,形成解决问题的思路,以此考查直观想象素养.
例2 (2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则( )
A.BM=EN,且直线BM,EN是相交直线
B.BM≠EN,且直线BM,EN是相交直线
C.BM=EN,且直线BM,EN是异面直线
D.BM≠EN,且直线BM,EN是异面直线
2.(2018·北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )
A.1B.2C.3D.4
二、逻辑推理、数学运算
素养3 逻辑推理
通过提出问题和论证命题的过程,看我们能否选择合适的论证方法和途径予以证明,并能用准确、严谨的数学语言表述论证过程,以此考查逻辑推理素养.
例3 (2019·全国Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
甲:
我的成绩比乙高.
乙:
丙的成绩比我和甲的都高.
丙:
我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )
A.甲、乙、丙B.乙、甲、丙
C.丙、乙、甲D.甲、丙、乙
3.(2018·全国Ⅰ)已知双曲线C:
-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|等于( )
A.
B.3C.2
D.4
素养4 数学运算
通过各类数学问题特别是综合性问题的处理,看我们能否做到明确运算对象,分析运算条件,选择运算法则,把握运算方向,设计运算程序,获取运算结果,以此考查数学运算素养.
例4 (2019·全国Ⅰ)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为( )
A.
B.
C.
D.
4.(2018·全国Ⅲ)设a=log0.20.3,b=log20.3,则( )
A.a+b C.a+b<0 三、数学建模、数据分析 素养5 数学建模 通过实际应用问题的处理,看我们是否能够运用数学语言清晰、准确地表达数学建模的过程和结果,以此考查数学建模素养. 例5 (2019·全国Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 ,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 .若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是( ) A.165cmB.175cmC.185cmD.190cm 5.(2019·北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销: 一次购买水果的总价达到120元,顾客就少付x元,每笔订单顾客网上支付成功后,李明会得到支付款的80%. (1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元; (2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________. 素养6 数据分析 通过对概率与统计问题中大量数据的分析和加工,看我们能否获得数据提供的信息及其所呈现的规律,进而分析随机现象的本质特征,发现随机现象的统计规律,以此考查数据分析素养. 例6 (2019·全国Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验: 将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图: 记C为事件: “乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70. (1)求乙离子残留百分比直方图中a,b的值; (2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 6.某市一水电站的年发电量y(单位: 亿千瓦时)与该市的年降雨量x(单位: 毫米)有如下统计数据: 2013年 2014年 2015年 2016年 2017年 降雨量x(毫米) 1500 1400 1900 1600 2100 发电量y(亿千瓦时) 7.4 7.0 9.2 7.9 10.0 (1)若从统计的5年中任取2年,求这2年的发电量都高于7.5亿千瓦时的概率; (2)由表中数据求得线性回归方程为 =0.004x+ ,该水电站计划2019年的发电量不低于8.6亿千瓦时,现由气象部门获悉2019年的降雨量约为1800毫米,请你预测2019年能否完成发电任务?
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考数学冲刺 逐提特训 专题1 12+4分项练2 列学生试题 高考 数学 冲刺 专题 12 分项练 学生 试题