超快数学心算法.docx
- 文档编号:3383936
- 上传时间:2022-11-22
- 格式:DOCX
- 页数:13
- 大小:19.87KB
超快数学心算法.docx
《超快数学心算法.docx》由会员分享,可在线阅读,更多相关《超快数学心算法.docx(13页珍藏版)》请在冰豆网上搜索。
超快数学心算法
超快数学心算法
扔掉计算器】超快数学心算法
最近中央电视台播放了一个“速算法”电视专题节目,看了后,认为确实很好,小孩要是掌握了这种速算法后,将会大大提高学习质量,但要想学,最少也得花几百元的学费(因电视上没说具体要多少钱,光送给你的礼品,价值就是是400多元,你就知道大概要收多少钱了?
)。
无意中在网上看到这种“”,不一定比电视上说的好,但起码不用花钱,可以了解一下这种心算法的基本内容,有兴趣的家长,不仿浏览一下。
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:
15×17
15+7=22
5×7=35
---------------
255
即15×17=255
解释:
15×17
=15×(10+7)
=15×10+15×7
=150+(10+5)×7
=150+70+5×7
=(150+70)+(5×7)
为了提高速度,熟练以后可以直接用“15+7”,而不用“150+70”。
例:
17×19
17+9=26
7×9=63
即260+63=323
二、个位是1的两位数相乘
方法:
十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例:
51×31
50×30=1500
50+30=80
------------------
1580
因为1×1=1,所以后一位一定是1,在得数的后面添上1,即1581。
数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
例:
81×91
80×90=7200
80+90=170
------------------
7370
------------------
7371
原理大家自己理解就可以了。
三、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例:
43×46
(43+6)×40=1960
3×6=18
----------------------
1978
例:
89×87
(89+7)×80=7680
9×7=63
----------------------
7743
四、首位相同,两尾数和等于10的两位数相乘
十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
例:
56×54
(5+1)×5=30--
6×4=24
----------------------
3024
例:
73×77
(7+1)×7=56--
3×7=21
----------------------
5621
例:
21×29
(2+1)×2=6--
1×9=9
----------------------
609
“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。
五、首位相同,尾数和不等于10的两位数相乘
两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
例:
56×58
5×5=25--
(6+8)×5=7--
6×8=48
----------------------
3248
得数的排序是右对齐,即向个位对齐。
这个原则很重要。
六、被乘数首尾相同,乘数首尾和是10的两位数相乘。
乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。
例:
66×37
(3+1)×6=24--
6×7=42
----------------------
2442
例:
99×19
(1+1)×9=18--
9×9=81
----------------------
1881
七、被乘数首尾和是10,乘数首尾相同的两位数相乘
与帮助6的方法相似。
两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。
例:
46×99
4×9+9=45--
6×9=54
-------------------
4554
例:
82×33
8×3+3=27--
2×3=6
-------------------
2706
八、两首位和是10,两尾数相同的两位数相乘。
两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。
例:
78×38
7×3+8=29--
8×8=64
-------------------
2964
例:
23×83
2×8+3=19--
3×3=9
--------------------
1909
B、平方速算
一、求11~19的平方
底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。
例:
17×17
17+7=24-
7×7=49
---------------
289
参阅乘法速算中的“十位是1的两位相乘”
二、个位是1的两位数的平方
底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。
例:
71×71
7×7=49--
7×2=14-
-----------------
5041
参阅乘法速算中的“个位数是1的两位数相乘”
三、个位是5的两位数的平方
十位加1乘以十位,在得数的后面接上25。
例:
35×35
(3+1)×3=12--
25
----------------------
1225
四、21~50的两位数的平方
在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。
它们是:
21×21=441
22×22=484
23×23=529
24×24=576
求25~50的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。
例:
37×37
37-25=12--
(50-37)^2=169
----------------------
1369
注意:
底数减去25后,要记住在得数的后面留两个位置给十位和个位。
例:
26×26
26-25=1--
(50-26)^2=576
-------------------
676
C、加减法
一、补数的概念与应用
补数的概念:
补数是指从10、100、1000……中减去某一数后所剩下的数。
例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。
补数的应用:
在速算方法中将很常用到补数。
例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。
D、除法速算
一、某数除以5、25、125时
1、被除数÷5
=被除数÷(10÷2)
=被除数÷10×2
=被除数×2÷10
2、被除数÷25
=被除数×4÷100
=被除数×2×2÷1
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:
15×17
15+7=22
5×7=35
---------------
255
即15×17=255
解释:
15×17
=15×(10+7)
=15×10+15×7
=150+(10+5)×7
=150+70+5×7
=(150+70)+(5×7)
为了提高速度,熟练以后可以直接用“15+7”,而不用“150+70”。
例:
17×19
17+9=26
7×9=63
即260+63=323
二、个位是1的两位数相乘
方法:
十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例:
51×31
50×30=1500
50+30=80
------------------
1580
因为1×1=1,所以后一位一定是1,在得数的后面添上1,即1581。
数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
例:
81×91
80×90=7200
80+90=170
------------------
7370
------------------
7371
原理大家自己理解就可以了。
三、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例:
43×46
(43+6)×40=1960
3×6=18
----------------------
1978
例:
89×87
(89+7)×80=7680
9×7=63
----------------------
7743
四、首位相同,两尾数和等于10的两位数相乘
十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
例:
56×54
(5+1)×5=30--
6×4=24
----------------------
3024
例:
73×77
(7+1)×7=56--
3×7=21
----------------------
5621
例:
21×29
(2+1)×2=6--
1×9=9
----------------------
609
“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。
五、首位相同,尾数和不等于10的两位数相乘
两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
例:
56×58
5×5=25--
(6+8)×5=7--
6×8=48
----------------------
3248
得数的排序是右对齐,即向个位对齐。
这个原则很重要。
六、被乘数首尾相同,乘数首尾和是10的两位数相乘。
乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。
例:
66×37
(3+1)×6=24--
6×7=42
----------------------
2442
例:
99×19
(1+1)×9=18--
9×9=81
----------------------
1881
七、被乘数首尾和是10,乘数首尾相同的两位数相乘
与帮助6的方法相似。
两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。
例:
46×99
4×9+9=45--
6×9=54
-------------------
4554
例:
82×33
8×3+3=27--
2×3=6
-------------------
2706
八、两首位和是10,两尾数相同的两位数相乘。
两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。
例:
78×38
7×3+8=29--
8×8=64
-------------------
2964
例:
23×83
2×8+3=19--
3×3=9
--------------------
1909
B、平方速算
一、求11~19的平方
底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。
例:
17×17
17+7=24-
7×7=49
---------------
289
参阅乘法速算中的“十位是1的两位相乘”
二、个位是1的两位数的平方
底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。
例:
71×71
7×7=49--
7×2=14-
-----------------
5041
参阅乘法速算中的“个位数是1的两位数相乘”
三、个位是5的两位数的平方
十位加1乘以十位,在得数的后面接上25。
例:
35×35
(3+1)×3=12--
25
----------------------
1225
四、21~50的两位数的平方
在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。
它们是:
21×21=441
22×22=484
23×23=529
24×24=576
求25~50的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。
例:
37×37
37-25=12--
(50-37)^2=169
----------------------
1369
注意:
底数减去25后,要记住在得数的后面留两个位置给十位和个位。
例:
26×26
26-25=1--
(50-26)^2=576
-------------------
676
C、加减法
一、补数的概念与应用
补数的概念:
补数是指从10、100、1000……中减去某一数后所剩下的数。
例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。
补数的应用:
在速算方法中将很常用到补数。
例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。
D、除法速算
一、某数除以5、25、125时
1、被除数÷5
=被除数÷(10÷2)
=被除数÷10×2
=被除数×2÷10
2、被除数÷25
=被除数×4÷100
=被除数×2×2÷100
3、被除数÷125
=被除数×8÷100
=被除数×2×2×2÷100
在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。
因本人水平所限,上面的算法不一定是最好的心算法。
00
3、被除数÷125
=被除数×8÷100
=被除数×2×2×2÷100
在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。
因本人水平所限,上面的算法不一定是最好的心算法。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 心算