数学中考复习提纲.docx
- 文档编号:3311878
- 上传时间:2022-11-21
- 格式:DOCX
- 页数:16
- 大小:27.90KB
数学中考复习提纲.docx
《数学中考复习提纲.docx》由会员分享,可在线阅读,更多相关《数学中考复习提纲.docx(16页珍藏版)》请在冰豆网上搜索。
数学中考复习提纲
知识点1:
一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常数项是-2.
2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.
知识点2:
直角坐标系与点的位置
1.直角坐标系中,点A(3,0)在y轴上。
2.直角坐标系中,x轴上的任意点的横坐标为0.
3.直角坐标系中,点A(1,1)在第一象限.
4.直角坐标系中,点A(-2,3)在第四象限.
5.直角坐标系中,点A(-2,1)在第二象限.
知识点3:
已知自变量的值求函数值
1.当x=2时,函数y= 的值为1.
2.当x=3时,函数y= 的值为1.
3.当x=-1时,函数y= 的值为1.
知识点4:
基本函数的概念及性质
1.函数y=-8x是一次函数.
2.函数y=4x+1是正比例函数.
3.函数 是反比例函数.
4.抛物线y=-3(x-2)2-5的开口向下.
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线 的顶点坐标是(1,2).
7.反比例函数 的图象在第一、三象限.
知识点5:
数据的平均数中位数与众数
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
知识点6:
特殊三角函数值
1.cos30°= .
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
知识点7:
圆的基本性质
1.半圆或直径所对的圆周角是直角.
2.任意一个三角形一定有一个外接圆.
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.
4.在同圆或等圆中,相等的圆心角所对的弧相等.
5.同弧所对的圆周角等于圆心角的一半.
6.同圆或等圆的半径相等.
7.过三个点一定可以作一个圆.
8.长度相等的两条弧是等弧.
9.在同圆或等圆中,相等的圆心角所对的弧相等.
10.经过圆心平分弦的直径垂直于弦。
知识点8:
直线与圆的位置关系
1.直线与圆有唯一公共点时,叫做直线与圆相切.
2.三角形的外接圆的圆心叫做三角形的外心.
3.弦切角等于所夹的弧所对的圆心角.
4.三角形的内切圆的圆心叫做三角形的内心.
5.垂直于半径的直线必为圆的切线.
6.过半径的外端点并且垂直于半径的直线是圆的切线.
7.垂直于半径的直线是圆的切线.
8.圆的切线垂直于过切点的半径.
知识点9:
圆与圆的位置关系
1.两个圆有且只有一个公共点时,叫做这两个圆外切.
2.相交两圆的连心线垂直平分公共弦.
3.两个圆有两个公共点时,叫做这两个圆相交.
4.两个圆内切时,这两个圆的公切线只有一条.
5.相切两圆的连心线必过切点.
知识点10:
正多边形基本性质
1.正六边形的中心角为60°.
2.矩形是正多边形.
3.正多边形都是轴对称图形.
4.正多边形都是中心对称图形.
知识点11:
一元二次方程的解
1.方程x²=1的解为______________.
2.方程3x²=27的解为______________
3.关于x的方程mx²-3x=x²-mx+2是一元二次方程,则m___________.
4.一元二次方程的一般形式是()
Ax²+bx+c=0Bax²+c=0(a≠0)
Cax²+bx+c=0Dax²+bx+c=0(a≠0)
5.方程3x²+27=0的解是()
Ax=±3Bx=-3C无实数根D以上都不对
6.方程6x²-5=0的一次项系数是()
A6B5C-5D0
知识点12:
方程解的情况及换元法
1.一元二次方程 的根的情况是 .
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
2.不解方程,判别方程3x2-5x+3=0的根的情况是 .
A.有两个相等的实数根 B. 有两个不相等的实数根
C.只有一个实数根 D. 没有实数根
3.不解方程,判别方程3x2+4x+2=0的根的情况是 .
A.有两个相等的实数根 B. 有两个不相等的实数根
C.只有一个实数根 D. 没有实数根
4.不解方程,判别方程4x2+4x-1=0的根的情况是 .
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
5.不解方程,判别方程5x2-7x+5=0的根的情况是 .
A.有两个相等的实数根 B. 有两个不相等的实数根
C.只有一个实数根 D. 没有实数根
6.不解方程,判别方程5x2+7x=-5的根的情况是 .
A.有两个相等的实数根 B. 有两个不相等的实数根
C.只有一个实数根 D. 没有实数根
7.不解方程,判别方程x2+4x+2=0的根的情况是 .
A.有两个相等的实数根 B. 有两个不相等的实数根
C.只有一个实数根 D. 没有实数根
8. 不解方程,判断方程5y +1=2 y的根的情况是
A.有两个相等的实数根 B. 有两个不相等的实数根
C.只有一个实数根 D. 没有实数根
9. 用 换 元 法 解方 程 时, 令 =y,于是原方程变为 .
A.y -5y+4=0 B.y -5y-4=0 C.y -4y-5=0 D.y +4y-5=0
10. 用换元法解方程 时,令 =y,于是原方程变为 .
A.5y -4y+1=0 B.5y -4y-1=0 C.-5y -4y-1=0 D.-5y -4y-1=0
11. 用换元法解方程( )2-5( )+6=0时,设 =y,则原方程化为关于y的方程是 .
A.y2+5y+6=0 B.y2-5y+6=0 C.y2+5y-6=0 D.y2-5y-6=0
知识点13:
自变量的取值范围
1.y=2x+4
2.y=-2x²
3.y=
4.y=
5.y=(x-3)0
知识点14:
基本函数的概念
1.下列函数中,正比例函数是 .
A.y=-8x B.y=-8x+1 C.y=8x2+1 D.y=4/x
2.下列函数中,反比例函数是 .
A. y=8x2 B.y=8x+1 C.y=-8x D.y=-1.6/x
3.下列函数:
①y=8x2;②y=8x+1;③y=-8x;④y=x+1- .其中,一次函数有 个 .
A.1个 B.2个 C.3个 D.4个
知识点15:
圆的基本性质
1.如图,四边形ABCD内接于⊙O,已知∠C=80°,则∠A的度数是 .
A.50° B.80°
C.90° D.100°
2.已知:
如图,⊙O中, 圆周角∠BAD=50°,则圆周角∠BCD的度数是 .
A.100° B.130° C.80° D.50°
3.已知:
如图,⊙O中, 圆心角∠BOD=100°,则圆周角∠BCD的度数是 .
A.100° B.130° C.80° D.50°
4.已知:
如图,四边形ABCD内接于⊙O,则下列结论中正确的是 .
A.∠A+∠C=180° B.∠A+∠C=90°
C.∠A+∠B=180° D.∠A+∠B=90
5.半径为5cm的圆中,有一条长为6cm的弦,则圆心到此弦的距离为 .
A.3cm B.4cm C.5cm D.6cm
6.已知:
如图,圆周角∠BAD=50°,则圆心角∠BOD的度数是 .
A.100° B.130° C.80° D.50
7.已知:
如图,⊙O中,弧AB的度数为100°,则圆周角∠ACB的度数是 .
A.100° B.130° C.200° D.50
8. 已知:
如图,⊙O中, 圆周角∠BCD=130°,则圆心角∠BOD的度数是 .
A.100° B.130° C.80° D.50°
9. 在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O的半径为 cm.
A.3 B.4 C.5 D.10
10. 已知:
如图,⊙O中,弧AB的度数为100°,则圆周角∠ACB的度数是 .
A.100° B.130° C.200° D.50°
12.在半径为5cm的圆中,有一条弦长为6cm,则圆心到此弦的距离为 .
A. 3cm B. 4cm C.5cm D.6cm
知识点16:
点、直线和圆的位置关系
1.已知⊙O的半径为10㎝,如果一条直线和圆心O的距离为10㎝,那么这条直线和这个圆的位置关系为 .
A.相离 B.相切 C.相交 D.相交或相离
2.已知圆的半径为6.5cm,直线l和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 .
A.相切 B.相离 C.相交 D. 相离或相交
3.已知圆O的半径为6.5cm,PO=6cm,那么点P和这个圆的位置关系是
A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定
4.已知圆的半径为6.5cm,直线l和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 .
A.0个 B.1个 C.2个 D.不能确定
5.一个圆的周长为acm,面积为acm2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 .
A.相切 B.相离 C.相交 D. 不能确定
6.已知圆的半径为6.5cm,直线l和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 .
A.相切 B.相离 C.相交 D.不能确定
7. 已知圆的半径为6.5cm,直线l和圆心的距离为4cm,那么这条直线和这个圆的位置关系是 .
A.相切 B.相离 C.相交 D. 相离或相交
8. 已知⊙O的半径为7cm,PO=14cm,则PO的中点和这个圆的位置关系是 .
A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定
知识点17:
圆与圆的位置关系
1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是 .
A. 外离 B. 外切 C. 相交 D. 内切
2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是 .
A.内切 B. 外切 C. 相交 D. 外离
3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是 .
A.外切 B.相交 C. 内切 D. 内含
4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是 .
A.外离 B. 外切 C.相交 D.内切
5.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长4 ,则两圆的位置关系是 .
A.外切 B. 内切 C.内含 D. 相交
6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是 .
A.外切 B.相交 C. 内切 D. 内含
知识点18:
公切线问题
1.如果两圆外离,则公切线的条数为 .
A.1条 B.2条 C.3条 D.4条
2.如果两圆外切,它们的公切线的条数为 .
A.1条 B.2条 C.3条 D.4条
3.如果两圆相交,那么它们的公切线的条数为 .
A.1条 B.2条 C.3条 D.4条
4.如果两圆内切,它们的公切线的条数为 .
A.1条 B.2条 C.3条 D.4条
5. 已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有 条.
A.1条 B.2条 C.3条 D.4条
6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有 条.
A.1条 B.2条 C.3条 D.4条
知识点19:
正多边形和圆
1.如果⊙O的周长为10πcm,那么它的半径为 .
A. 5cm B. cm C.10cm D.5πcm
2.正三角形外接圆的半径为2,那么它内切圆的半径为 .
A.2 B. C.1 D.
3.已知,正方形的边长为2,那么这个正方形内切圆的半径为 .
A.2 B. 1 C. D.
4.扇形的面积为 ,半径为2,那么这个扇形的圆心角为= .
A.30° B.60° C.90° D.120°
5.已知,正六边形的半径为R,那么这个正六边形的边长为 .
A. R B.R C. R D.
6.圆的周长为C,那么这个圆的面积S= .
A. B. C. D.
7.正三角形内切圆与外接圆的半径之比为 .
A.1:
2 B.1:
C. :
2 D.1:
8. 圆的周长为C,那么这个圆的半径R= .
A.2 B. C. D.
9.已知,正方形的边长为2,那么这个正方形外接圆的半径为 .
A.2 B.4 C.2 D.2
10.已知,正三角形的半径为3,那么这个正三角形的边长为 .
A.3 B. C.3 D.3
知识点20:
函数图像问题
1.已知:
关于x的一元二次方程 的一个根为 ,且二次函数 的对称轴是直线x=2,则抛物线的顶点坐标是 .
A.(2,-3) B.(2,1) C.(2,3) D.(3,2)
2.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 .
A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2)
3.一次函数y=x+1的图象在 .
A.第一、二、三象限 B. 第一、三、四象限
C. 第一、二、四象限 D. 第二、三、四象限
4.函数y=2x+1的图象不经过 .
A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限
5.反比例函数y= 的图象在 .
A.第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限
6.反比例函数y=- 的图象不经过 .
A第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限
7.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 .
A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2)
8.一次函数y=-x+1的图象在 .
A.第一、二、三象限 B. 第一、三、四象限
C. 第一、二、四象限 D. 第二、三、四象限
9.一次函数y=-2x+1的图象经过 .
A.第一、二、三象限 B.第二、三、四象限
C.第一、三、四象限 D.第一、二、四象限
10. 已知抛物线y=ax2+bx+c(a>0且a、b、c为常数)的对称轴为x=1,且函数图象上有三点A(-1,y1)、B( ,y2)、C(2,y3),则y1、y2、y3的大小关系是 .
A.y3 知识点21: 分式的化简与求值 知识点22: 二次根式的化简与求值 知识点23: 方程的根 1.当m= 时,分式方程 会产生增根. A.1 B.2 C.-1 D.2 2.分式方程 的解为 . A.x=-2或x=0 B.x=-2 C.x=0 D.方程无实数根 3.用换元法解方程 ,设 =y,则原方程化为关于y的方程 . A.y +2y-5=0 B.y +2y-7=0 C.y +2y-3=0 D.y +2y-9=0 4.已知方程(a-1)x2+2ax+a2+5=0有一个根是x=-3,则a的值为 . A.-4 B. 1 C.-4或1 D.4或-1 5.关于x的方程 有增根,则实数a为 . A.a=1 B.a=-1 C.a=±1 D.a=2 6.二次项系数为1的一元二次方程的两个根分别为- - 、 - ,则这个方程是 . A.x +2 x-1=0 B.x +2 x+1=0 C.x -2 x-1=0 D.x -2 x+1=0 7.已知关于x的一元二次方程(k-3)x2-2kx+k+1=0有两个不相等的实数根,则k的取值范围是 . A.k>- B.k>- 且k≠3 C.k<- D.k> 且k≠3 知识点24: 求点的坐标 1.已知点P的坐标为(2,2),PQ‖x轴,且PQ=2,则Q点的坐标是 . A.(4,2) B.(0,2)或(4,2) C.(0,2) D.(2,0)或(2,4) 2.如果点P到x轴的距离为3,到y轴的距离为4,且点P在第四象限内,则P点的坐标为 . A.(3,-4) B.(-3,4) C.4,-3) D.(-4,3) 3.过点P(1,-2)作x轴的平行线l1,过点Q(-4,3)作y轴的平行线l2,l1、l2相交于点A,则点A的坐标是 . A.(1,3) B.(-4,-2) C.(3,1) D.(-2,-4) 知识点25: 基本函数图像与性质 1.若点A(-1,y1)、B(- ,y2)、C( ,y3)在反比例函数y= (k<0)的图象上,则下列各式中不正确的是 . A.y3 2.在反比例函数y= 的图象上有两点A(x1,y1)、B(x2,y2),若x2<0 A.m>2 B.m<2 C.m<0 D.m>0 3.已知: 如图,过原点O的直线交反比例函数y= 的图象于A、B两点,AC⊥x轴,AD⊥y轴,△ABC的面积为S,则 . A.S=2 B.2 4.已知点(x1,y1)、(x2,y2)在反比例函数y=- 的图象上, 下列的说法中: ①图象在第二、四象限;②y随x的增大而增大;③当0 A.1个 B.2个 C.3个 D.4个 5.若反比例函数 的图象与直线y=-x+2有两个不同的交点A、B,且∠AOB<90º,则k的取值范围必是 . A.k>1 B.k<1 C.0 6.若点( , )是反比例函数 的图象上一点,则此函数图象与直线y=-x+b(|b|<2)的交点的个数为 . A.0 B.1 C.2 D.4 7.已知直线 与双曲线 交于A(x1,y1),B(x2,y2)两点,则x1·x2的值 . A.与k有关,与b无关 B.与k无关,与b有关 C.与k、b都有关 D.与k、b都无关 知识点26: 正多边形问题 1.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正四边形、正六边形,那么另个一个为 . A. 正三边形 B.正四边形 C.正五边形 D.正六边形 2.为了营造舒适的购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长相同的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,则在每一个顶点的周围,正四边形、正八边形板料铺的个数分别是 . A.2,1 B.1,2 C.1,3 D.3,1 3.选用下列边长相同的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是 . A.正四边形、正六边形 B.正六边形、正十二边形 C.正四边形、正八边形 D.正八边形、正十二边形 4.用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.张师傅准备装修客厅,想用同4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 中考 复习 提纲