经典行程问题总汇.docx
- 文档编号:3239738
- 上传时间:2022-11-20
- 格式:DOCX
- 页数:16
- 大小:185.42KB
经典行程问题总汇.docx
《经典行程问题总汇.docx》由会员分享,可在线阅读,更多相关《经典行程问题总汇.docx(16页珍藏版)》请在冰豆网上搜索。
经典行程问题总汇
经典行程问题总汇
一、相遇问题
1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站。
已知慢车每小时行45千米,甲、乙两站相距多少千米?
2、甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距多少千米?
3.一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米?
4、兄弟两人同时从家里出发到学校,路程是1400米。
哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。
从出发到相遇,弟弟走了多少米?
相遇处距学校有多少米?
6、甲、乙两人同时从A、B两地相向而行,相遇时距A地120米,相遇后,他们继续前进,到达目的地后立即返回,在距A地150米处再次相遇,AB两地的距离是多少米?
7、A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?
相遇时距A地多远?
8、甲、乙两人从A地到B地,丙从B地到A地。
他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇。
求乙的速度。
9、甲、乙、丙三人行走的速度依次分别为每分钟30米、40米、50米。
甲、乙在A地,丙在B地,同时相向而行,丙遇乙后10分钟和甲相遇。
求A、B两地相距多少米?
10、甲、乙两车分别从A、B两地同时相对开出,经过5小时相遇,相遇后各自继续前进,又经过3小时,甲车到达B地,这时乙车距A地还有120千米。
甲、乙两车的速度各是多少?
11、甲、乙两人从相距1100米的两地相向而行,甲每分钟走65米,乙每分钟走75米,乙带了一只狗和乙同时出发,狗以每分钟210米的速度向甲奔去,遇到甲后立即回头向乙奔去,遇到乙后又回头向甲奔去,直到甲、乙两人相遇时狗才停止。
这只狗共奔跑了多少路程?
二、追及问题
1、两辆汽车相距1500千米,甲车在乙车前面,甲车每分钟行610米,乙车每分钟660米,乙车追上甲车需几分钟?
2、老王和老张从甲地到乙地开会,老张骑自行车的速度是15千米/小时,先出发2小时后,老王老出发,老王用了3小时追上老张,求老王骑车速度。
4、两地相距900千米,甲车行全程需15小时,乙车行全程需12小时,甲车先出发2小时后,乙去追甲,问乙车要走多少千米才能追上甲车?
5、甲、乙两船同时从两个码头出发,方向相同,乙船在前,每小时行24千米,甲船在后,每小时行28千米,4小时后甲船追上乙船,求两个码头相距离多少千米?
6、甲、乙两城之间的铁路长240千米,快车从甲城、慢车从乙城同时相向开出,3小时相遇,如果两车分别从两城向同一方向开出,慢车在前、快车在后,15小时快车就可以追上慢车,求快车与慢车每小时各行多少千米?
7、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?
8、小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明。
求小强骑自行车的速度
9、甲、乙两匹马相距50米的地方同时出发,出发时甲马在前乙马在后。
如果甲马每秒跑10米,乙马每秒跑12米,问:
何时两马相距70米?
10、甲、乙二人绕周长为1200米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的1.2倍。
现在甲在乙的后面400米,问:
乙追上甲还需多少时间?
11、甲、乙两人同时从A地到B地,乙出发3小时后甲才出发,甲走了5小时后,已超过乙2千米。
已知甲每小时比乙多行4千米。
甲、乙两人每小时各行多少千米?
三、火车问题
1、一支队伍长450米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队伍的最前面,然后再返回队尾,一共用了多少分钟?
2、小明坐在行驶的列车上,从窗外看到迎面开来的货车经过用了6秒,已知货车长168米;后来又从窗外看到列车通过一座180米长的桥用了12秒。
货车每小时行( )千米。
3、一支部队排成1200米长的队伍行军,在队尾的通讯员要与最前面的营长联系,他用6分钟时间跑步追上了营长,为了回到队尾,在追上营长的地方等待了24分钟。
如果他从最前头跑步回到队尾,那么只需要( )分钟。
4、一列火车通过一座1000米的大桥要65秒,如果用同样的速度通过一座730米的隧道则要50秒。
求这列火车前进的速度和火车的长度。
5、解放军某部出动80辆汽车参加工地劳动,在途中要经过一个长120米的隧道。
如果每辆汽车的长为10米,相邻两辆汽车相隔20米,那么,车队以每分钟500米的速度通过隧道,需要多少分钟?
6、在与铁路平行的公路上,一个步行的人和一个骑自行车的人同向前进,步行人每秒走l米,骑车人每秒走3米,在铁路上,从这两人后面有列火车开来,火车通过行人用了22秒,通过骑车人用了26秒。
这列火车全长多少米?
四、流水行船问题
1、船在河中航行时,顺水速度是每小时12千米,逆水速度是每小时6千米。
船速每小时()千米,水速每小时()千米。
2、一只轮船在静水中的速度是每小时21千米,船从甲城开出逆水航行了8小时,到达相距144千米的乙城。
这只轮船从乙城返回甲城需多少小时?
3、甲、乙两港相距360千米,一艘轮船从甲港到乙港,顺水航行15小时到达,从乙港返回甲港,逆水航行20小时到达。
现在另有一艘船,船速是每小时12千米,它往返两港需要多少小时?
4、一只小船,第一次顺流航行56千米,逆流航行20千米,共用12小时;第二次用同样的时间,顺流航行40千米,逆流航行28千米。
求这只小船在静水中的速度。
参考答案
一、相遇问题
1、810千米
2、19.2千米
3、快车520千米 客车480千米
4、600米
5、2米
6、255米
7、6小时,28千米
8、360千米
9、64厘米
10、5千米/秒
11、720米
12、甲37.5(千米/小时)乙22.5(千米/小时)
13、1650米
14、4.8千米
二、追及问题
1、甲10千米/小时乙6千米/小时
2、200米
3、780米
4、300米
5、8分
6、甲150(米/分)乙130(米/分)
三、火车问题
1、9分
2、46.8
3、4
5、5分
6、286米
四、流水行船问题
1、93
2、6
3、64
4、120千米
5、6千米/小时
6、15千米/小时
行程经典1
一条环行道路,周长为2千米,甲、乙、丙3人从同一地点同时出发,每人环行2周,现有自行车2辆,乙和丙骑自行车出发,甲步行出发,中途乙和丙下车步行,把自行车留给其他人骑,已知甲步行的速度是每小时5千米,乙和丙步行的速度是每小时4千米。
3人骑车的速度都是每小时20千米。
请设计一种走法,使3个人、2辆车同时到达终点,那么环行两周最少用多少分钟?
解:
如图作出示意图:
设:
当乙骑车到C时把自行车放下步行;当乙骑车到C时,甲步行到B;
当丙骑车到E时把自行车放下步行;
甲骑车、乙步行同时到E,这时丙步行到F,然后甲乙都骑车,丙步行同时到G;
甲步行和乙骑车的速度比:
5:
20=4:
1;
∴AB=1份;BC=3份;
甲步行和乙步行的速度比:
5:
4=5:
4;
∴CD=3÷5×4=2.4份;
甲骑车和乙步行的速度比:
20:
4=5:
1;
∴DE=2.4÷(5-1)=0.6份;
甲乙同时到E时需要的时间(按照乙计算):
4÷20+(2.4+0.6)÷4=19/20;
丙骑车到E需要的时:
(1+3+3)÷20=7/20;
丙步行从E到F需要的时间:
19/20-7/20=3/5;
∴EF=4×3/5=2.4;
甲乙骑车和乙步行的速度比:
20:
4=5:
1;
∴FG=2.4÷(5-1)=0.6份;
∴一份的路程:
4÷(1+3+3+2.4+0.6)=0.4千米;
∴一共需要的时间(按照丙计算):
(1+3+3)×0.4÷20+3×0.4÷4=11/25小时;
行程经典2
如图,在长为490米的环形跑道上,、两点之间的跑道长50米,甲、乙两人同时从、两点出发反向奔跑.两人相遇后,乙立刻转身与甲同向奔跑,同时甲把速度提高了25%,乙把速度提高了20%.结果当甲跑到点时,乙恰好跑到了点.如果以后甲、乙的速度和方向都不变,那么当甲追上乙时,从一开始算起,甲一共跑了多少米。
行程经典3
乌龟与小白兔赛跑比赛场地从起点到插小旗处马上返回,跑到起点再返回……已知小白兔每秒跑10.2米,乌龟每秒跑0.2米,如果从起点出发算它们第一次相遇,问:
1)出发后多长时间它们第二次相遇?
2)第三次相遇距起点多远?
3)第二次相遇到第四次相遇乌龟爬了多远?
4)乌龟爬到50米时,它们共相遇了多少次?
分析与解答:
1)第二次相遇是在小白兔返回时,迎面相遇,用时为:
2×104÷(10.2+0.2)=20(秒),即20秒后迎面相遇;2)第三次相遇是小白兔比乌龟多跑一圈后追上乌龟的时候,用时为:
2×104÷(10.2-0.2)=20.8(秒),此时乌龟爬了:
20.8×0.2=4.16(米),即第三次相遇距起点4.16米;3)第四次相遇是小白兔第二次与乌龟迎面相遇,与上一次迎面相遇相差时间为:
2×104÷(10.2+0.2)=20(秒),乌龟爬了:
20×0.2=4(米),即第二次与第四次相遇乌龟爬了4米;4)乌龟爬50米用时为50÷0.2=250(秒),小白兔跑了250×10.2=2550(米),在乌龟没到小旗处之前,小白兔每104米中都会与乌龟相遇一次,因此2550÷104=24……,54.54>50,第25次乌龟与小白兔也已经相遇,因此它们共相遇了25次。
评注:
这是一道综合题,包括相遇问题、追及问题等,正确判断问题的类型,用适当方法解决也是重要的技巧。
1.
自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发地点9千米处追上了自行车队,然后通讯员立即返回出发点,到后又返回去追上了自行车队,再追上时,恰好离出发点18千米,求自行车队和摩托车的速度?
分析:
比较复杂的行程问题,关键在于找到新的突破口,本题中给出了两次追击的路程,这就是突破口。
解答:
从第一次追上到第二次追上的过程中,自行车队进了18-9=9(千米),而摩托车行进了:
18+9=27(千米),由此可知摩托车速度是自行车队的3倍,那么第一次追及开始时,自行车领先距离为:
6÷12=0.5(千米/分),摩托车速度为:
0.5×3=1.5(千米/分)。
评注:
在行程问题中,条件与条件之间有密切关系,充分利用所有已知条件及由这些条件推导出的条件非常重要,而要掌握所有条件首先就需要把整个行程的过程弄清楚。
2.图39是一个边长100米的正方形,甲从A点出发,每分钟走70米,乙同时从B点出发,每分钟走85米,两人都按逆时针方向沿着正方形边行进,问:
乙在何处首次追上甲?
乙第二次追上甲时,距B点多远。
分析与解答:
乙比甲快,第一次追及距离为300米,所用时间为:
300÷(85-70)=20(分钟),此时甲走了70×20=1400(米),因此首次追上时,甲、乙在C点。
第二次追距离从C点开始算是一圈400米,用时为:
400÷(85-70)=26又2/3(分钟),乙走的距离为:
26又2/3×85=2266又2/3(米),因此乙第二次追上甲时在A、B之间距B33又1/3米处。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经典 行程 问题 总汇