小学数学西师版六年级下册总复习整理的知识点.docx
- 文档编号:3228287
- 上传时间:2022-11-20
- 格式:DOCX
- 页数:11
- 大小:77.66KB
小学数学西师版六年级下册总复习整理的知识点.docx
《小学数学西师版六年级下册总复习整理的知识点.docx》由会员分享,可在线阅读,更多相关《小学数学西师版六年级下册总复习整理的知识点.docx(11页珍藏版)》请在冰豆网上搜索。
小学数学西师版六年级下册总复习整理的知识点
总复习(数与代数概念部分)
一、数的意义:
1、整数:
像—3、—2、—1、0、1、2、3……这样的数统称为整数。
整数的个数是无限的。
没有最小的整数,也没有最大的整数,自然数是整数的一部分。
2、自然数:
用来表示物体个数的数。
像1、2、3、4、5……叫做自然数。
一个物体也没有用0表示。
自然数的个数是无限的,最小的自然数是0,没有最大的自然数。
3、小数:
把整数“1”平均分成10份、100份、1000份……这样的一分或几份的数是十分之几、百分之几、千分之几……可以用小数表示。
4、小数的分类:
(1)纯小数和带小数:
整数部分是o的小数叫做纯小数,整数部分不是o的小数叫做带小数。
(2)有限小数和无限小数:
小数部分的位数是有限的小数叫做有限小数;小数部分的位数是无限的小数叫做无限小数。
(3)循环小数:
一个小数,从小数部分的某一位起一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。
(4)循环节:
一个循环小数的小数部分,依次不断重复出现的数字叫做这个小数的循环节。
(5)纯循环小数和混循环小数:
循环节从小数部分第一位开始的,叫做纯循环小数;循环节不是从第一位开始的,叫做混循环小数。
5、计数单位:
个、十、百、千·····以及十分之一、百分之一、千分之一·····都是计数单位。
6、数位:
各个计数单位所占的位置叫做数位。
7、十进制计数法:
“十进制计数法”是世界各国最常用的一种计数方法。
它的特点是每相邻的两个计数单位之间的进率都是“十”就是10个较低的计数单位可以进成一个较高的计数单位(既通常说的“逢十进一”), 这种以“十”为基础进位的计数方法,叫做十进制计数法。
8、整数和小数数位顺序表:
9、分数:
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
(1)分数单位:
把单位“1”平均分成若干份,表示这样的一份的数就是这个分数的分数单位。
(2)分数的分类:
真分数:
分子比分母小的分数叫做真分数。
真分数小于1。
假分数:
分子比分母大或者分子等于分母的分数叫做假分数,假分数≧1
10、百分数:
表示一个数是另一个数的百分之几的数叫做百分数,百分数也叫百分率或百分比。
百分数的分数单位是1%。
百分数的分母是100。
11、分数和百分数的关系:
分数既可以表示一个数(后面可加数量单位);也可以表示两个数的比(两数之间的关系)。
而百分数只表示一个数占另一个数的百分比(两数之间的关系),不能表示具体的数。
因此百分数不带单位。
12、正数和负数:
像1/3、+2、0.5、+4.5…这样的数叫做正数;像―1/2、―5.5、―6…这样的数叫做负数。
(不能认为:
一个数的前面加上“+”号这个数就是正数,也不能认为:
一个数的前面加上“—”号这个数就是负数)。
比如:
“—a”这个数我们就不能判断是负数,因为a可能:
是正数、是负数、0都有可能;所以我们无法判断。
自然数是等于或大于0的整数,也可以说是不小于0的整数,既是非负整数。
0既不是正数也不是负数。
二、数的读法和写法。
1、读法:
从高位到低位,一级一级的往下读,每一级末尾的0都不读出来,其他数位的连续的几个0都只读一个。
2、写法:
从高位到低位,一级一级的往下写,哪一个数位上一个单位也没有,就在那个数为上写0。
(一)、小数的读法与写法:
读法:
通常是整数部分按整数的读法去读,小数点读作“点”,小数部分按从左向右的顺序只读出数字。
写法:
写小数时,整数部分按整数部分的写法去写,小数点写在个位的右下角,小数部分按从左向右的顺序
依次写出每一个数位上的数字。
(二)、分数的读法与写法:
读法:
读分数时,先读分数的分母,再读“分之”最后读分子。
读带分数时,要先读整数部分,再读“又”字,最后按分数部分的读法读分数部分。
(分数线的读法:
“分之”),
写法:
写分数时,要先写分数线,再写分母,最后写分子,写带分数时,要先写整数部分,再写分数部分,整数部分要对其分数线,二者要紧凑。
(三)、百分数的读法与写法:
读法:
百分数的读法与分数相同。
写法:
百分数通常不写成分数形式,而是在原来的分子后面加上百分号“%”来表示。
写百分数时,先写分子,再写百分号。
(四)、数的大小比较:
1、整数的大小比较:
比较两个整数的大小,首先要看它们的位数,如果位数不相同,那么位数多的那个数就大;如果位数相同,就先从高位比起,相同数位上的数大的那个数就大;
2、小数的大小比较:
先比较它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上数大的那个数就大;十分位上的数字相同,百分位上的数大那个数就大。
…以此类推。
3、分数的大小比较:
分母相同的分数,分子大的那个分数就大;(因为分母相同,分数单位就相等,分子大的就意味着含有的分数单位多。
);分子相同的分数相比较,分母小的那个分数大。
(分子相同含有的分数单位数相同,分母小的分数分数单位就大)分子、分母都不同的分数相比较,先通分,转化成同分母分数后,再比较大小。
4、正数和负数的大小比较:
负数都比正数小。
0大于一切负数,0小于一切正数。
5、两个负数相比较:
如果a>b(a、b均为正数),则-a<-b。
就是在不看负数符号的情况下:
数大的那个数反而小。
三、数的性质:
1、分数的性质:
分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。
(注意:
分数的分单位有变化,分子、分母都有变化)
2、约分和通分:
把一个分数化成和原分数相等的,且分子分母都比原分数小的的分数叫做约分;把异分母分数分别化成和原分数相等的同分母分数,叫做通分。
3、最简分数:
分子和分母只有公因数1的分数叫做最简分数。
4、小数的基本性质:
小数的末尾添上或去掉0,小数的大小不变。
(注意:
小数的位数有变化,精确度有变化。
)
5、小数点的位置移动引起小数的大小变化规律:
小数点每向右移动一位、两位、三位···这个数就扩大到原来的10倍、100倍、1000倍···;小数点每向左移动一位、两位、三位···该数就缩小到原数的1/10、1/100、1/1000···。
四、数的改写:
1、把多位数改写成以”万“或者以”亿”单位的数。
(1)直接改写:
把多位数改写成以”万“或者以”亿”单位的数,先把原来的小数点向左移动4位或者8位,再在数后面加上“万”或“亿”字,中间用“=”连接。
(2)省略尾数改写成近似数:
先用“四舍五入法”省略万位或者亿位后面的尾数,再在这个数的后面写上“万”字或者“亿”字。
得出的是近似数,中间用“≈”连接。
2、求小数的近似数:
根据要求,要把小数保留到哪一位,就把这一位后面的尾数按照“四舍五入法”省略,中间用“≈”。
3、小数、分数、百分数的互化:
小数化成分数方法:
先看小数点后面有几位小数,就在1的后面添上几个0做分母,原来的小数去掉小数点后做分子。
能约分的要约成最简分数。
分数化成小数方法:
用分子除以分母。
小数化成百分数的方法:
把小数的小数点向右移动两位,(位数不足时用0补足)同时在后面添上“%”。
百分数化成小数的方法:
把百分数的分子的小数点向左移动两位,同时去掉后面的“%”。
百分数化成分数的方法:
先把百分数的改写成分母是100的分数,然后约成最简分数。
分数化成百分数的方法:
先把分数化成小数,在把小数化成百分数。
4、判断一个分数能否化成有限小数的方法:
一个最简分数,如果分母中除了含有质因数2和5以外,不含有其它质因数, 这个分数就能化成有限小数;如果分母中含有了2和5以外的其他质因数,这个分数就不能化成有限小数。
五、数的整除:
1、整除:
整数a除以整数b(b≠0),除得的商正好是整数且没有余数,我们就说数a能被数b整除。
(也可以说b能整除a)。
2、因数和倍数:
如果a×b=c(a、b、c都是非0整数)那么a、b就叫做c的因数,c就叫做a、b的倍数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3、公因数和最大公因数:
几个数的公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。
4、公倍数和最小公倍数:
几个数公有的倍数,叫做这几个数的公倍数;其中最小的那个数叫做这几个数的最小公倍数。
。
5、求两个数的最大公因数的方法:
一般采用列举法,就是把两个数的因数一一列举出来,然后找出两个数的公因数,其中最大的那个数就是这两个数最大公因数。
也可以采用短除法。
短除法求最大公因数的方法:
把两个数写在
的横线上,先用着这两个数的公有质因数做除数,如果两个数的商是互质数,除数就是这两个数的所得的商就是这两个数的最大公因数。
如果两个数的商不互质,就按照上面的方法继续除,直到两个数的商最后是互质数为止,然后把所有的除数连乘起来,所得的积就是这两个数的最大公因数。
6、求两个数的最小公倍数的方法:
一般也采用列举法,把两个数的倍数数根据需要按从小到大的顺序列举一部分,然后找出两个数的公有的倍数,其中最小的那个公倍数就是这两个数的最小公倍数。
也可以采用短除法。
短除法求最小公倍数的方法:
把两个数写在
的横线上,先用着这两个数的公有质因数做除数,所得的商写在横线下的相对应的位置,如果两个数的商是互质数,就把除数和最后的两个商连乘起来,所得的积就是这两个数的最小公倍数;如果两个数的商不互质,就按照上面的方法继续除,直到两个数的商最后是互质数为止,然后把所有的除数和最后所得商连乘起来,所得的积就是这两个数的最小公倍数。
7、求两个数的最大公因数和最小公倍数的特殊方法:
如果两个数中,较大数是较小数的倍数,较小数就是较大数的因数,则较大数是这两个数的最小公倍数;较小数是这两个数的最大公因数。
如果两个数是互质数,则它们的最大公因数是1,最小公倍数是这两个数的乘积。
8、奇数和偶数、在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数,最小的偶数是0,最小的奇数是1。
9、2、5、3的倍数的特征。
(1)2的倍数的特征:
个位上是0、2、4、6、8的数都是2的倍数。
(2)5的倍数的特征:
个位上是0或5的数都是5的倍数。
(3)3的倍数特征:
一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
10、质数和合数:
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
质数有且只有两个因数,合数至少有三个因数。
1既不是质数也不数合数。
11、质因数与分解质因数:
每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。
把一个合数用质数相乘的形式表示出来,就是分解质因数。
12、分解质因数的方法:
把一个合数分解质因数,通常用短除法,分解质因数时,先用这个合数的质因数(通常用最小的开始)去除,得出的商如果是质数,就把除数和商写成相乘的形式;得出的商如果是合数,就照上面的方法继续下去,直到得出商是质数为止,然后把各个除数和最后的商写成连乘的形式。
13、大于0的自然数的分类方法:
(1)根据是否是2的倍数,自然数可分为:
奇数和偶数。
(2)根据所含因数的个数,自然数可分为:
1、质数、合数。
六、数的运算:
1、加法的意义:
把两个数(或几个数)合并成一个数的运算。
2、减法的意义:
已知两个数的和与其中的一个加数,求另一个加数的运算。
3、乘法的意义:
(1)一个数乘整数,就是求几个相同加数和的简便运算。
(2)一个数乘小数,可以看作是求这个数的十分之几,百分之几···是多少?
(3)一个数乘
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 西师版 六年级 下册 复习 整理 知识点