平面直角坐标系全章知识点加习题加测试.docx
- 文档编号:3181349
- 上传时间:2022-11-19
- 格式:DOCX
- 页数:20
- 大小:385.91KB
平面直角坐标系全章知识点加习题加测试.docx
《平面直角坐标系全章知识点加习题加测试.docx》由会员分享,可在线阅读,更多相关《平面直角坐标系全章知识点加习题加测试.docx(20页珍藏版)》请在冰豆网上搜索。
平面直角坐标系全章知识点加习题加测试
第12章平面直角坐标系
12.1.1有序实数对
在日常生活中,我们常常会碰到这样的问题:
到电影院看电影你怎样找到自己的位置?
在地图上你怎样确定一个地点的位置?
下象棋时,有人说“炮二平八”,你怎么走棋子?
这些都说的是用两个数确定一个物体的位置,那么怎样确定一个物体的位置呢?
一、有序数对
下面是根据教室平面图写的通知:
请以下座位的同学:
(1,5)、(2,4)、(4,2)、(3,3)、(5,6),今天放学后参加数学问题讨论.
怎样确定教室里座位的位置?
可用排数和列数两个不同的数来确定位置。
排数和列数的先后顺序对位置有影响吗?
举例说明。
排数和列数的先后顺序对位置有影响,如(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”,则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。
这就是说用两个数表示物体的位置是有顺序的。
假设我们约定“列数在前,排数在后”,请你在课本图6.1-1上标出被邀请参加讨论的同学的座位。
上面提到的问题都是通过像“几排几号”这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,例如前面的表示“排数”,后面的表示“列数”。
我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
利用有序数对,可以很准确地表示出一个位置。
生活中利用有序数对表示位置的情况是很常见的。
你能再举出一些例子吗?
二、例题
写出表示学校里各个地点的有序数对.
12.1.2平面直角坐标系
(一)
数轴上的点可以用什么来表示?
可以用一个数来表示,我们把这个数叫做这个点的坐标。
[投影1]如图,点A的坐标是2,点B的坐标是-3。
坐标为-4的点在数轴上的什么位置?
在点C处。
这就是说,知道了数轴上一个点的坐标,这个点的位置就确定了。
类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内的点的位置呢?
一、平面直角坐标系
我们知道,平面内的点的位置可以用有序数对来表示,为此,我们可以在平面内画出两条互相垂直、原点重合的数轴组成直角坐标系来表示。
如图,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点。
有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了。
二、点的坐标
如图,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4)
A
x
y
o
3
4
M
N
·(3,4)
-4
-3
B·
C·
D·
类似地,请你根据课本41面图6.1-4,写出点B、C、D的坐标.
B(-3,4)、C(0,2)、D(-3,0).
注意:
写点的坐标时,横坐标在前,纵坐标在后。
三、四个象限
x
y
o
第二象限
(-,+)
第一象限
(+,+)
第二象限
(-,-)
第二象限
(+,-)
建立了平面直角坐系以后,坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫第一象限、第二象限、第三象限、第四象限.坐标轴上的点不属于任何象限。
思考:
1、原点O的坐标是什么?
x轴和y轴上的点的坐标有什么特点?
原点O的坐标是(0,0),x轴上的点的纵坐标为0,y轴上的点的横坐标为0。
2、各象限内的点的坐标有什么特点?
第一象限上的点,横坐标为正数,纵坐标为正数;
第二象限上的点,横坐标为负数,纵坐标为正数;
第三象限上的点,横坐标为负数,纵坐标为负数;
第四象限上的点,横坐标为正数,纵坐标为负数.
四、课堂练习
1、点A(-2,-1)与x轴的距离是________,与y轴的距离是________.
注意:
纵坐标的绝对值是该点到x轴的距离,横坐标的绝对值是该点到y轴的距离。
2、点A(3,a)在x轴上,点B(b,4)在y轴上,则a=______,b=______.
3、点M(-2,3)在第象限,则点N(-2,-3)在____象限.,点P(2,-3)在____象限,点Q(2,3)在____象限.
五、课堂小结
1、平面直角坐标糸及有关概念;
2、、已知一个点,如何确定这个点的坐标.
3、坐标轴上的点和象限点的特点。
12.1.2平面直角坐标系
(二)
写出图中点A、B、C、D、E的坐标。
.由点的位置可以写出它的坐标,反之,已知点的坐标怎样确定点的位置呢?
一、例题
例请你画出一个平面直角坐标系,并在这个平面直角坐标系中描出下列各点:
A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,4).
二、建立直角坐标糸
探究:
如图,正方形ABCD的边长为6.
(1)如果以点A为原点,AB所在的直线为x轴,建立平面坐标系,那么y轴是哪条线?
y轴是AD所在直线.
(2)写出正方形的顶点A、B、C、D的坐标.
A(0,0),B(0,6),C(6,6),D(6,0).
(3)请你另建立一个平面直角坐标系,此时正方形的顶点A、B、C、D的坐标又分别是多少?
与同学交流一下.
可以看到建立的直角坐标系不同,则各点的坐标也不同.你认为怎样建立直角坐标系才比较适当?
要尽量使更多的点落在坐标轴上。
四、课堂练习
1、在平面直角坐标系中,顺次连结A(-3,4),B(-6,-2),C(6,-2),D(3,4)四点,所组成的图形是________.
五、课堂小结
1、已知点的位置可以写出它的坐标,已知点的坐标可以描出点的位置。
点与有序数对(坐标)是一一对应的关系。
2、为了方便地描述物体的位置,需要建立适当的直角坐标糸。
第十二章复习一(12.1)
一、双基回顾
1、点的坐标:
过平面内任意一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的坐标a、b分别叫做点P的,有序数对(a,b)叫做P点的。
注意:
平面上的点与有序实数对(坐标)一一对应。
〔1〕已知点P的坐标是(-2,3),则点P到x轴的距离是,到y轴的距离是.
2、象限
x
y
o
第二象限
(-,+)
第一象限
(+,+)
第二象限
(-,-)
第二象限
(+,-)
〔2〕如果点M到y轴的距离是4,到x轴的距离是3,则M的坐标为.
3、坐标轴上点的特征:
x轴上点的坐标的特点是,y轴上点的坐标的特点是,原点的坐标是.
〔3〕如果点A(m,n)的坐标满足mn=0,则点A在()
A.原点上B.x轴上C.y轴上D.坐标轴上
4、建立直角坐标系
〔4〕如图所示,若在象棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点.
二、例题导引
例1如果点M(a+b,ab)在第二象限,那么点N(a,b)在第________象限;若a=0,则M点在.
例2已知长方形ABCD中,AB=5,BC=3,并且AB∥x轴,若点A的坐标为(-2,4),求点C的坐标.
例3已知四边形ABCD各顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),求四边形ABCD的面积。
12.2.1用坐标表示地理位置
一、用坐标表示地理位置
探究:
根据以下条件画一幅示意图,标出学校和小刚家、小强家、小敏家的位置.
小刚家:
出校门向东走150米,再向北走200米.
小强家:
出校门向西走200米,再向北走350米,最后再向东走50米.
小敏家:
出校门向南走100米,再向东走300米,最后向南走75米.
我们知道,在平面内建立直角坐标系后,平面内的点都可以用坐标来表示,为此,要确定区域内一些地点的位置,就要建立直角坐标系。
思考:
以什么位置为原点?
如何确定x轴、y轴?
选取怎样的比例尺?
小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点.以正东方向为x轴,以正北方向为y轴建立直角坐标系。
取比例尺1:
10000(即图中1格相当于实际的100米).
点(150,200)就是小刚家的位置。
请你在课本50面图6.2-2上画出小强家、小敏家的位置,并标明它们的坐标。
归纳一下,利用平面直角坐标系确定区域内一些地点的位置的步骤是什么?
(1)建立直角坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
(2)根据具体问题确定适当的比例尺,定出坐标系中的单位长度;
(3)在坐标平面内画出表示地点的点,写出各点的坐标和各个地点的名称.
注意:
(1)通常选择比较有名的地点,或者较居中的位置为坐标原点;
(2)坐标轴的方向通常以正北为纵轴的正方向,正东为横轴的正方向;(3)要标明比例尺或坐标轴上的单位长度.
三、课堂练习
下图是小红所在学校的平面示意图,请你指出学校各地点的位置。
四、课堂小结
怎样利用坐标表示地理位置?
12.2.1用坐标表示平移
上节课我们学习了用坐标表示地理位置,体现了直角坐标系在实际中的应用,本节课我们研究直角坐标系的另一个应用——用坐标表示平移。
.
一、图形的平移与图形上点的变化规律
首先我们研究点的平移规律。
如图,
(1)将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,点A的坐标发生了什么变化?
把点A向上平移4个单位长度呢?
将点A向右平移5个单位长度,横坐标增加了5个单位长度,纵坐标不变;将点A向上平移4个单位长度,纵坐标增加了4个单位长度,横坐标不变.
(2)把点A向左或向下平移4个单位长度,点A的坐标发生了什么变化?
将点A向左平移4个单位长度,横坐标减少了4个单位长度,纵坐标不变;将点A向下平移4个单位长度,纵坐标减少了4个单位长度,横坐标不变.
从点A的平移变化中,你知道在什么情况下,坐标不变吗?
在什么情况下,坐标增加或减少吗?
将点向左右平移纵坐标不变,向上下平移横坐标不变;将点向右或向上平移几个单位长度,横坐标或纵坐标就增加几个单位长度;向左或向下平移几个单位长度,横坐标或纵坐标就减少几个单位长度。
简单地表示为
再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?
二、图形上点的变化与图形平移,对称的规律
1、点的平移:
对一个图形进行平移,就是对这个图形上所有点的平移,因而这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
例如图
(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).
(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?
(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?
解:
如图
(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.
思考:
(1)如果将这个问题中的“横坐标都减去6”“纵坐标都减去5”相应的变为“横坐标都加3”“纵坐标都加2”,分别能得出什么结论?
画出得到的图形。
(2)如果将三角形ABC三个顶点的横坐标都减去6
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 直角 坐标系 知识点 习题 测试