高三高考数学国步分项分类题及析答案五四.docx
- 文档编号:3157987
- 上传时间:2022-11-18
- 格式:DOCX
- 页数:13
- 大小:75.08KB
高三高考数学国步分项分类题及析答案五四.docx
《高三高考数学国步分项分类题及析答案五四.docx》由会员分享,可在线阅读,更多相关《高三高考数学国步分项分类题及析答案五四.docx(13页珍藏版)》请在冰豆网上搜索。
高三高考数学国步分项分类题及析答案五四
高三高考数学国步分项分类题及析答案五四
8-2圆的方程
基础巩固强化
1.(2011·广州检测)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )
A.x2+(y-2)2=1 B.x2+(y+2)2=1
C.(x-1)2+(y-3)2=1D.x2+(y-3)2=1
[答案] A
[解析] 设圆心坐标为(0,b),则由题意知
=1,解得b=2,
故圆的方程为x2+(y-2)2=1.
2.(文)(2011·广东文,8)设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则圆C的圆心轨迹为( )
A.抛物线B.双曲线
C.椭圆D.圆
[答案] A
[解析] 动圆圆心C到定点(0,3)的距离与到定直线y=-1的距离相等,符合抛物线的定义,故选A.
(理)(2011·广州模拟)动点A在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点的轨迹方程是( )
A.(x+3)2+y2=4B.(x-3)2+y2=1
C.(2x-3)2+4y2=1D.(x+)2+y2=
[答案] C
[解析] 设中点M(x,y),则点A(2x-3,2y),
∵A在圆x2+y2=1上,∴(2x-3)2+(2y)2=1,
即(2x-3)2+4y2=1,故选C.
3.方程(x2+y2-4)=0表示的曲线形状是( )
[答案] C
[解析] 注意到方程(x2+y2-4)=0等价于①或②x+y+1=0.①表示的是不在直线x+y+1=0的左下方且在圆x2+y2=4上的部分;②表示的是直线x+y+1=0.因此,结合各选项知,选C.
4.(2011·华安、连城、永安、漳平、龙海、泉港六校联考)圆x2+y2-2x-2y+1=0上的点到直线3x+4y+5=0的距离最大值是a,最小值是b,则a+b=( )
A.B.
C.D.5
[答案] B
[解析] 圆心C(1,1)到直线3x+4y+5=0距离d=,∴a+b=+=(r为圆的半径).
5.(2012·福州八县联考)已知函数f(x)=,x∈[1,2],对于满足1 ①f(x2)-f(x1)>x2-x1; ②x2f(x1)>x1f(x2); ③(x2-x1)[f(x2)-f(x1)]<0; ④(x2-x1)[f(x2)-f(x1)]>0. 其中正确结论的个数为( ) A.1 B.2 C.3 D.4 [答案] B [解析] 曲线y=,x∈[1,2]表示圆(x-1)2+y2=1,位于直线x=1右侧x轴上方的四分之一个圆,∵1 6.(文)(2011·日照模拟)圆心在曲线y=(x>0)上,且与直线3x+4y+3=0相切的面积最小的圆的方程为( ) A.(x-1)2+(y-3)2=()2 B.(x-3)2+(y-1)2=()2 C.(x-2)2+(y-)2=9 D.(x-)2+(y-)2=9 [答案] C [解析] 设圆心坐标为(a,)(a>0), 则圆心到直线3x+4y+3=0的距离d==(a++1)≥(4+1)=3,等号当且仅当a=2时成立. 此时圆心坐标为(2,),半径为3,故所求圆的方程为 (x-2)2+(y-)2=9. (理)(2011·西安模拟)若直线ax+2by-2=0(a>0,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则+的最小值为( ) A.1B.5 C.4D.3+2 [答案] D [解析] 由条件知圆心C(2,1)在直线ax+2by-2=0上,∴a+b=1, ∴+=(+)(a+b) =3++≥3+2, 等号在=,即b=2-,a=-1时成立. 7.设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,则点P的轨迹方程为________. [答案] (x+3)2+(y-4)2=4(x≠-且x≠-) [解析] 如图所示,设P(x,y), N(x0,y0),则线段OP的中点坐标为(,),线段MN的中点坐标为(,).由于平行四边形的对角线互相平分, 故=,=. 从而. 因为N(x+3,y-4)在圆上,故(x+3)2+(y-4)2=4. 因此所求轨迹为圆: (x+3)2+(y-4)2=4,但应除去两点(-,)和(-,)(点P在直线OM上时的情况). 8.(2011·南京模拟)已知点M(1,0)是圆C: x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是________. [答案] x+y-1=0 [解析] 过点M的最短的弦与CM垂直,圆C: x2+y2-4x-2y=0的圆心为C(2,1), ∵kCM==1,∴最短弦所在直线的方程为y-0=-1(x-1),即x+y-1=0. 9.(文)已知圆心在x轴上,半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是________. [答案] (x+2)2+y2=2 [解析] 设圆的方程为(x-a)2+y2=2(a<0),由条件得=,∴|a|=2,又a<0,∴a=-2. (理)(2012·石家庄一模)已知动圆的圆心C在抛物线x2=2py(p>0)上,该圆经过点A(0,p),且与x轴交于两点M、N,则sin∠MCN的最大值为________. [答案] 1 [解析] 当圆心C的纵坐标为p时,C(p,p)为圆心的圆方程为(x-p)2+(y-p)2=2p2,令y=0得,x=p±p,∴MC⊥NC,∴sin∠MCN=1. 10.(文)已知圆C: x2+y2-4x-6y+12=0,点A(3,5),求: (1)过点A的圆的切线方程; (2)O点是坐标原点,连结OA,OC,求△AOC的面积S. [解析] (1)⊙C: (x-2)2+(y-3)2=1. 当切线的斜率不存在时,过点A的直线方程为x=3,C(2,3)到直线的距离为1,满足条件. 当k存在时,设直线方程为y-5=k(x-3), 即kx-y+5-3k=0,由直线与圆相切得, =1,∴k=. ∴直线方程为x=3或y=x+. (2)|AO|==, 直线OA: 5x-3y=0, 点C到直线OA的距离d=, S=·d·|AO|=. (理)(2011·兰州一诊)已知圆M过两点C(1,-1),D(-1,1),且圆心M在x+y-2=0上. (1)求圆M的方程; (2)设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB面积的最小值. [解析] (1)设圆M的方程为: (x-a)2+(y-b)2=r2(r>0). 根据题意,得 解得a=b=1,r=2, 故所求圆M的方程为(x-1)2+(y-1)2=4. (2)因为四边形PAMB的面积 S=S△PAM+S△PBM =|AM|·|PA|+|BM|·|PB|, 又|AM|=|BM|=2,|PA|=|PB|,所以S=2|PA|, 而|PA|==, 即S=2. 因此要求S的最小值,只需求|PM|的最小值即可, 即在直线3x+4y+8=0上找一点P, 使得|PM|的值最小, 所以|PM|min==3, 所以四边形PAMB面积的最小值为: S=2=2=2. 能力拓展提升 11.(2011·西安模拟)已知圆的方程为x2+y2-6x-8y=0,设该圆中过点M(3,5)的最长弦、最短弦分别为AC、BD,则以点A、B、C、D为顶点的四边形ABCD的面积为( ) A.10B.20 C.30D.40 [答案] B [解析] 圆的方程: (x-3)2+(y-4)2=25, ∴半径r=5, 圆心到最短弦BD的距离d=1, ∴最短弦长|BD|=4, 又最长弦长|AC|=2r=10, ∴四边形的面积S=×|AC|×|BD|=20. 12.(文)(2011·成都龙泉第一中学模拟)以抛物线y2=20x的焦点为圆心,且与双曲线-=1的两渐近线都相切的圆的方程为( ) A.x2+y2-20x+64=0B.x2+y2-20x+36=0 C.x2+y2-10x+16=0D.x2+y2-10x+9=0 [答案] C [解析] 抛物线的焦点坐标是(5,0),双曲线的渐近线方程是3x±4y=0, 点(5,0)到直线3x±4y=0的距离d=3即为所求圆的半径.故所求圆的方程为(x-5)2+y2=9, 即x2+y2-10x+16=0,故选C. (理)设A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程是( ) A.(x-1)2+y2=4B.(x-1)2+y2=2 C.y2=2xD.y2=-2x [答案] B [解析] 设P(x,y),圆心C(1,0),由题意知PA⊥AC,∴|PC|2=|PA|2+|AC|2=2,∴(x-1)2+y2=2,故选B. 13.(2011·长春市调研)若圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且圆与直线x-y+1=0相交所得的弦长为2,则圆的方程是________________. [答案] (x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244 [解析] 设圆的方程为(x-a)2+(y-b)2=r2,点A(2,3)关于直线x+2y=0的对称点仍在圆上,说明圆心在直线x+2y=0上,即有a+2b=0,根据题意可得 解得或 所求圆的方程为(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244. 14.(文)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为__________. [答案] (x+1)2+y2=2 [解析] 在直线方程x-y+1=0中,令y=0得,x=-1,∴圆心坐标为(-1,0), 由点到直线的距离公式得圆的半径 R==, ∴圆的标准方程为(x+1)+y2=2. (理)圆C的半径为1,圆心在第一象限,与y轴相切,与x轴相交于A、B,|AB|=,则该圆的标准方程是________. [答案] (x-1)2+2=1 [解析] 设圆心C(a,b),由条件知a=1,取弦AB中点D,则CD===, 即b=,∴圆方程为(x-1)2+2=1. 15.(文)(2011·青岛模拟)已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点. (1)求证: △OAB的面积为定值; (2)设直线y=-2x+4与圆C交于点M、N,若|OM|=|ON|,求圆C的方程. [解析] (1)证明: ∵圆C过原点O,∴OC2=t2+. 设圆C的方程是(x-t)2+2=t2+, 令x=0,得y1=0,y2=; 令y=0,得x1=0,x2=2t, ∴S△OAB=|OA|·|OB|=××|2t|=4, 即△OAB的面积为定值. (2)∵|OM|=|ON|,|CM|=|CN|, ∴OC垂直平分线段MN. ∵kMN=-2,∴kOC=. ∴直线OC的方程是y=x. ∴=t,解得t=2或t=-2. 当t=2时,圆心C的坐标为(2,1),OC=, 此时C到直线y=-2x+4的距离d=<, 圆C与直线y=-2x+4相交于两点. 当t=-2时,圆心C的坐标为(-2,-1),OC=, 此时C到直线y=-2x+4的距离d=>. 圆C与直线y=-2x+4不相交, ∴t=-2不符合题意,舍去. ∴圆C的方程为(x-2)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三高 数学 国步分项 分类 答案 五四
