超详小学数学知识点归纳汇总.docx
- 文档编号:3156031
- 上传时间:2022-11-18
- 格式:DOCX
- 页数:40
- 大小:44.63KB
超详小学数学知识点归纳汇总.docx
《超详小学数学知识点归纳汇总.docx》由会员分享,可在线阅读,更多相关《超详小学数学知识点归纳汇总.docx(40页珍藏版)》请在冰豆网上搜索。
超详小学数学知识点归纳汇总
小学数学知识归纳总结(打印版)
基本概念
第一章数和数的运算
一、概念
(一)整数
1、整数的意义
自然数和0都是整数。
2、自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
其中“一”是计数的基本单位。
10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:
从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
6、整数的写法:
从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴准确数:
在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。
⑵近似数:
根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如:
1302490015省略亿后面的尾数是13亿。
⑶四舍五入法:
求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法。
8、整数大小的比较:
位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
以此类推。
(二)小数
1、小数的意义
把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
如1/10记作0.1,7/100记作0.07。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。
小数部分有几个数位,就叫做几位小数。
如0.36是两位小数,3.066是三位小数
在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2、小数的读法:
读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
3、小数的写法:
写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
4、比较小数的大小:
先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
5、小数的分类
⑴纯小数:
整数部分是零的小数,叫做纯小数。
例如:
0.25、0.368都是纯小数。
⑵带小数:
整数部分不是零的小数,叫做带小数。
例如:
3.25、5.26都是带小数。
⑶有限小数:
小数部分的数位是有限的小数,叫做有限小数。
例如:
41.7、25.3、0.23都是有限小数。
⑷无限小数:
小数部分的数位是无限的小数,叫做无限小数。
例如:
4.33……3.1415926……
⑸无限不循环小数:
一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:
∏
⑹循环小数:
一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如:
3.555……0.0333……12.109109……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:
3.99……的循环节是“9”,0.5454……的循环节是“54”。
⑺纯循环小数:
循环节从小数部分第一位开始的,叫做纯循环小数。
例如:
3.111……0.5656……
⑻混循环小数:
循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222……0.03333……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
(三)分数
1、分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:
读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:
先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:
⑴分母相同的分数,分子大的那个分数就大。
⑵分子相同的分数,分母小的那个分数就大。
⑶分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
⑷如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类
按照分子、分母和整数部分的不同情况,可以分成:
真分数、假分数、带分数
⑴真分数:
分子比分母小的分数叫做真分数。
真分数小于1。
⑵假分数:
分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
⑶带分数:
假分数可以写成整数与真分数合成的数,通常叫做带分数。
6、分数和除法的关系及分数的基本性质
⑴除法是一种运算,有运算符号;分数是一种数。
因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
⑵由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
⑶分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
7、约分和通分
⑴分子、分母是互质数的分数,叫做最简分数。
⑵把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
⑶约分的方法:
用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
⑷把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
⑸通分的方法:
先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
8、倒数
⑴乘积是1的两个数互为倒数。
⑵求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
⑶1的倒数是1,0没有倒数
(四)百分数
1、百分数的意义
表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
2、百分数的读法:
读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
3、百分数的写法:
百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
4、百分数与折数、成数的互化:
例如:
三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐闯砂俜质褪?
0%,则六成五就是65%。
5、纳税和利息:
税率:
应纳税额与各种收入的比率。
利率:
利息与本金的百分率。
由银行规定按年或按月计算。
利息的计算公式:
利息=本金×利率×时间
6、百分数与分数的区别主要有以下三点:
⑴意义不同。
百分数是“表示一个数是另一个数的百分之几的数。
”它只能表示两数之间的倍数关系,不能表示某一具体数量。
如:
可以说1米是5米的20%,不可以说“一段绳子长为20%米。
”因此,百分数后面不能带单位名称。
分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。
分数不仅可以表示两数之间的倍数关系,如:
甲数是3,乙数是4,甲数是乙数的?
;还可以表示一定的数量,如:
犌Э恕米等。
⑵应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较。
而分数常常是在测量、计算中,得不到整数结果时使用。
⑶书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示。
如:
百分之四十五,写作:
45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:
真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
7、数的互化
⑴小数化成分数:
原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
⑵分数化成小数:
用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
⑶一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
⑷小数化成百分数:
只要把小数点向右移动两位,同时在后面添上百分号。
⑸百分数化成小数:
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
⑹分数化成百分数:
通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
⑺百分数化成小数:
先把百分数改写成分数,能约分的要约成最简分数。
(五)数的整除
1、整除的意义
整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
2、约数和倍数
⑴如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
⑵一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
⑶一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3、奇数和偶数
⑴自然数按能否被2整除的特征可分为奇数和偶数。
①能被2整除的数叫做偶数。
0也是偶数。
②不能被2整除的数叫做奇数。
⑵奇数和偶数的运算性质:
①相邻两个自然数之和是奇数,之积是偶数。
②奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,
奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
4、整除的特征
⑴个位上是0、2、4、6、8的数,都能被2整除。
⑵个位上是0或5的数,都能被5整除。
⑶一个数的各位上的数的和能被3整除,这个数就能被3整除。
⑷一个数各位数上的和能被9整除,这个数就能被9整除。
⑸能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
⑹一个数的末两位数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 知识点 归纳 汇总