基于TOP227Y芯片的单端反激式开关电源制作.docx
- 文档编号:30701078
- 上传时间:2023-08-19
- 格式:DOCX
- 页数:11
- 大小:734.99KB
基于TOP227Y芯片的单端反激式开关电源制作.docx
《基于TOP227Y芯片的单端反激式开关电源制作.docx》由会员分享,可在线阅读,更多相关《基于TOP227Y芯片的单端反激式开关电源制作.docx(11页珍藏版)》请在冰豆网上搜索。
基于TOP227Y芯片的单端反激式开关电源制作
基于TOP227Y芯片的单端反激式开关电源
前言
虽然身边到处充斥着电子设备,所有空间几乎都被各种电磁波覆盖,但是从来没有真正留意过什么。
后来,因为偶尔需要找朋友维修一些电子设备,加之有培养孩子学一些电子电路知识的想法,于是就在不经意间走近了“近在咫尺却又远在天边”的电子世界。
开始是基于简单的需要,利用工频变压器和LM317自己设计制作了带呼吸灯的直流稳压电源比较粗糙。
后来因为要改造车载点烟器的手机充电接口,又基于34063自制车载手机充电板,使用中发现34063做的充电板虽然基本满足使用要求。
但是一直存在芯片明显发热的问题,偶尔还有电感噪声。
于是基于LM2596再做车载手机充电板。
从制作中了解到LM2596系列是3A电流输出降压开关型集成稳压芯片,它内含固定频率振荡器(150KHZ)和基准稳压器(1.23v),并具有完善的保护电路、电流限制、热关断电路等。
利用该器件只需很少的外围器件便可构成高效稳压电路。
这时才第一次听说“开关电源”(开始还以为就是带机械开关的电源呢,呵呵)。
上网查阅资料,学习,尝试,自己终于制成了一款真正的开关电源。
知识超市
1、单激式变压器开关电源
变压器开关电源的最大优点是,变压器可以同时输出多组不同数值的电压,改变输出电压和输出电流很容易,只需改变变压器的匝数比和漆包线截面积的大小即可;另外,变压器初、次级互相隔离,不需共用同一个地。
因此,变压器开关电源也有人把它称为离线式开关电源。
这里的离线并不是不需要输入电源,而是输入电源与输出电源之间没有导线连接,完全是通过磁场偶合传输能量。
变压器开关电源采用变压器把输入输出进行电器隔离的最大好处是,提高设备的绝缘强度,降低安全风险,同时还可以减轻EMI干扰,并且还容易进行功率匹配。
变压器开关电源有单激式变压器开关电源和双激式变压器开关电源之分,单激式变压器开关电源普遍应用于小功率电子设备之中,因此,单激式变压器开关电源应用非常广泛。
而双激式变压器开关电源一般用于功率较大的电子设备之中,并且电路一般也要复杂一些。
单激式变压器开关电源的缺点是变压器的体积比双激式变压器开关电源的激式变压器的体积大,因为单激式开关电源的变压器的磁芯只工作在磁回路曲线的单端,磁回路曲线变化的面积很小。
2、单片开关电源的简单原理
单片开关电源由于具有单片集成化、最简外电路、最佳性能指标、无工频变压器、能完全实现电气隔离等显著特点,显示出强大的生命力,倍受人们青睐,是开关电源的发展方向。
目前,它已成为国际上开发290W以下高效率中、小功率开关电源、精密开关电源、特种开关电源及电源模块的优选集成电路。
TOP227Y是PI公司1997年推出了TOPSwitchⅡ系列器件中一款输出功率比大的芯片,其封装形式是TO-220,自带小散热片,是典型的三端集成器件,三个管脚分别为控制端C(control)、源极S(source)、漏极D(drain),其内部功率MOSFET器件的耐压值高达700V,可设计成150W以下仪器仪表的多路隔离式内置控制电源。
(现在该公司的产品已经出到TOPSwitch-JX系列型号是TOP264-271)
TOP227Y的基本工作原理是利用反馈电流Ic来调节占空比D,达到稳压目的。
如当输出电压Vo减小时,经过反馈电路使得Ic降低,D增大,Vo升高,最终使Vo保持不变。
本设计的原理图
如图是用TOP227Y芯片设计的单端反激式开关电源的原理图。
输入为220VAC(±15%),输出为+12VDC。
由于TOPSwitch芯片集成度高,设计工作主要是外围电路的设计。
外围电路基本分为输入整流滤波电路、钳位保护电路、高频变压器、输出整流滤波电路及反馈电路5部分。
电路中交流滤波线圈为10~33mH,采取双线并绕。
整流电路选择整流桥,交流电源经过BR1和C2整流滤波后产生直流高压,给高频变压器的初级绕组供电。
高频变压器初级绕组NP的极性与次级绕组NS、反馈绕组NF的极性相反。
在TOPSwitch导通时,次级整流管VD4截止,此时电能以磁能量形式存储在初级绕组中;当TOPSwitch截止时,VD4导通,能量传输给次级。
高频变压器在电路中兼有能量存储、隔离输出和电压变换这三大功能。
直流高压经初级绕组加至TOPSwitch的漏极上。
在功率MOSFET关断瞬间,高频变压器漏感会产生尖峰电压,另外在初级绕组上还会产生感应电压(即反向电动势),两者叠加至内部功率开关管MOSFET的漏极上,因此必须在漏极增加钳位保护电路。
钳位电路由瞬态电压抑制器或稳压管VR2和超快恢复二极管VD1组成。
VR2和VD1能将漏感产生的尖峰电压箝位到安全值。
VR2采用反向击穿电压为200V的瞬态电压抑制器P6KE200A,VD1选用1A/600V的超快恢复二极管BYV26C。
当MOSFET导通时,变压器的初级极性上端为正,下端为负,从而导致VD4截止,因而钳位电路不起作用。
在MOSFET截止瞬间,初级极性则变为上负下正,此时尖峰电压就被VR2吸收掉。
次级绕组电压通过VD4、C9、C10、L2和C12、C14整流滤波,获得12V输出电压Vo。
输出整流滤波电路由整流二极管和滤波电容、滤波电感构成。
输出整流二极管的开关损耗占系统损耗的1/6多,是影响开关电源效率的主要因素,它包括正向导通损耗和反向恢复损耗。
由于肖特基二极管反向恢复时间短,在降低反向恢复损耗以及消除输出电压中的纹波方面有明显的性能优势,所以选用肖特基二极管MUR620CT作为整流二极管。
对输出滤波电容,ESR(等效串联阻抗)和纹波电流是它的两个重要参数。
当电容两端电压小于35V时,ESR只与电容的体积有关,可以考虑使用高频低阻电容。
由于手里没有这样的电容,我采用两个电解电容并联降低内阻的办法。
输出滤波电感采用的是一个旧的拆机电感,测量大约有10uH。
它的作用主动抑制开关噪声的产生。
为减少共模干扰,在输出的地与高压侧的地之间接共模抑制电容,如图中的C11。
反馈绕组电压经过VD2、C7整流滤波后获得反馈电压,经光耦合器中的光敏三极管给TOPSwitch的控制端提供偏压。
输出电压Vo通过电阻R13、R15分压,与TL431中的2.5V基准电压进行比较后输出误差电压,然后通过光耦去改变控制端电流。
TOPSwitch的占空比D与Ic(控制电流)成反比。
反馈电路是通过调节TOPSwitch的占空比实现稳压的。
关于反馈相关参数设计
为使PWM线性调节,一般选PC817A二极管正向电流为3mA;TL431一般选20mA即可,不但可稳定工作,又能提供一部分死负载。
设计的取值为:
R12=470Ω,R3=150Ω,R13=38K,R15=10K。
(由于除了470欧的电阻手里没有其他对应阻值,所以采用两个300欧并联代替R3,R15采用12K,R13采用47K。
所以本设计实际输出电压为12.29V)
若需增加软起动功能以限制开启电源时的占空比,使Vo平滑地升高,应在U2的两端并联一只软起动电容,容量范围为4.7μF~47μF。
在软起动过程中Vo是按照一定的斜率升高的,能对TOP227Y起到保护作用。
改变高频变压器的匝数比和U2的稳压值,还可获得其他输出电压值。
R7为12V输出提供一个假负载,用以提高轻载时的负载调整率。
其实本设计中可以不用这个R7,可以在安装元件时把它换成滤波电容。
实际制作
PCB设计
[小常识]开关电源PCB排版的要点
1.旁路瓷片电容器的电容不能太大,而它的寄生串联电感应尽量小,多个电容并联能改善电容的阻抗特性;
2.电感的并联电容应尽量小,电感引脚焊盘之间的距离越远越好;避免在底层上放置任何功率或信号走线;
3.高频环路的面积应尽可能减小;
4.过孔放置不应破坏高频电流在底层上的路径;
5.系统板上不同电路需要不同接地层,不同电路的接地层通过单点与电源接地层相连接;
6.控制芯片至上端和至下端场效应管的的驱动电路环路要尽量短;
7.开关电源功率电路和控制信号电路元器件需要连接道不同的接地层,这两个地层一般都是通过单点相连接。
利用感光板制作
正在腐蚀中......
腐蚀完毕
涂阻焊层,制作丝印层,钻孔,焊接,制作成品。
以下两部分电路是预留调试用的,没有安装元件。
R8和C4构成能量吸收回路,他们的设计决定着钳位保护电路的类型
R11和C8构成缓冲电路,但是取值不当会引起更大的振荡。
由于没有示波器,无法测量输出波纹有多大,也没有设备去测量噪声如何。
只是用万用表测量空载输出12.29V,连接手机充电板,给手机充电从30%直至充满没有问题。
后记:
制作成功的关键:
一是变压器的设计制作(该公司有专门的设计软件,可惜已经不支持II系列了)。
我这里用的是一个现成二手的旧变压器。
另外就是PCB的设计很重要,自己去设计时才发现这里的学问太多了,学无止境啊!
附录:
制成电路板的尺寸大约是50mm*100mm。
体积比一个工频变压器大不了多少。
真是体积小,重量轻,效率高啊。
后来到朋友处用示波器测量,由于示波器比较古老,看不出直流输出有明显的波纹。
猜测:
该电源纹波电压峰一峰值小于100mV?
随后又测试了带载能力,持续点亮一个汽车前照卤素大灯,55W,电压一直非常稳定在12.29V,比较理想。
根据制成品和需要又重新微调了PCB布局:
1、改变交流滤波电感的封装,可以兼容手里两种不同规格的电感
2、进一步缩小高频回路的面积。
关于开关电源变压器次级大多采用“半波”整流方式的解释
开关电源利用单激方式工作,即开关管导通时变压器储能,截止时变压器才释能,所以变压器次级实际上输出的是脉冲电而非正、负半周都有。
所以采用半波足够了!
关于单片开关电源的选用
本设计对应Top-II系列芯片,换用TOP224Y(输出功率75W)亦可。
但是应用输出功率150W的TOP227Y,相当于降额使用,这样就可以降低导通损耗。
关于假负载的讨论
1、加假负载是为解决空载振荡的问题
原理:
单端反激电源在空载的情况下,在某些工作点处会发生振荡现象,表现为变压器的啸叫或输出的不稳定。
发生这种现象是由于空载或轻载时开关瞬时开通时间过大,造成输出能量太大因此电压过冲也很大。
需要较长的时间去恢复到正常电压,因此开关需停止工作一段时间,这样开关就工作于间歇性工作模式。
为了解决这种振荡而加假负载,这样使得电压过冲减小或消失。
但太大的假负载会使单端反激电源的效率降低,而且即使在轻载的情况下,在某一特定工作点也有可能发生振荡
2、高压轻载情况下,是反激环路最恶劣的状态,因为这时候主功率回路的极点频率很低,增益曲线会以-20db/dec衰减~而我们常常会在反激滤波电容的ESR零点频率处增加一个极点来补偿滤波电容的ESR零点,补偿回路在ESR零点频率后,会以-20db/dec衰减,而主功率回路,也会以-20db/dec衰减,这样一来,总的开环增益会以-40db/dec衰减,穿过0db线,系统极容易发生震荡。
增加死负载以后,主功率回路在ESR零点频率处的增益,是被抬高了的~
3、电路调试中,先加假负载使电路稳定,然后适当减小这个负载~
4、在反激中,起本身就存在一些固有的损耗,像431等,所以很多时候是不需要额外的增加假负载的
5、由于后级稳压器或假负载会造成成本增加和效率降低,因而它们缺乏足够的吸引力,特别是在近年来对多种消费类应用中的空载和/或待机输入功耗的法规要求越来越严格的情况下,这一设计开始受到冷落。
而有源并联稳压器不仅可以解决稳压问题,还能够最大限度地降低成本和效率影响。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 TOP227Y 芯片 单端反激式 开关电源 制作