中英文献翻译语音识别speech recognition.docx
- 文档编号:30610732
- 上传时间:2023-08-18
- 格式:DOCX
- 页数:15
- 大小:51.08KB
中英文献翻译语音识别speech recognition.docx
《中英文献翻译语音识别speech recognition.docx》由会员分享,可在线阅读,更多相关《中英文献翻译语音识别speech recognition.docx(15页珍藏版)》请在冰豆网上搜索。
中英文献翻译语音识别speechrecognition
中英文献翻译:
语音识别speechrecognition
SpeechRecognition
VictorZue,RonCole,&WayneWard
MITLaboratoryforComputerScience,Cambridge,Massachusetts,USA
OregonGraduateInstituteofScience&Technology,Portland,Oregon,USA
CarnegieMellonUniversity,Pittsburgh,Pennsylvania,USA
1DefiningtheProblem
Speechrecognitionistheprocessofconvertinganacousticsignal,capturedbyamicrophoneoratelephone,toasetofwords.Therecognizedwordscanbethefinalresults,asforapplicationssuchascommands&control,dataentry,anddocumentpreparation.Theycanalsoserveastheinputtofurtherlinguisticprocessinginordertoachievespeechunderstanding,asubjectcoveredinsection.
Speechrecognitionsystemscanbecharacterizedbymanyparameters,someofthemoreimportantofwhichareshowninFigure.Anisolated-wordspeechrecognitionsystemrequiresthatthespeakerpausebrieflybetweenwords,whereasacontinuousspeechrecognitionsystemdoesnot.Spontaneous,orextemporaneouslygenerated,speechcontainsdisfluencies,andismuchmoredifficulttorecognizethanspeechreadfromscript.Somesystemsrequirespeakerenrollment---ausermustprovidesamplesofhisorherspeechbeforeusingthem,whereasothersystemsaresaidtobespeaker-independent,inthatnoenrollmentisnecessary.Someoftheotherparametersdependonthespecifictask.Recognitionisgenerallymoredifficultwhenvocabulariesarelargeorhavemanysimilar-soundingwords.Whenspeechisproducedinasequenceofwords,languagemodelsorartificialgrammarsareusedtorestrictthecombinationofwords.
Thesimplestlanguagemodelcanbespecifiedasafinite-statenetwork,wherethepermissiblewordsfollowingeachwordaregivenexplicitly.Moregenerallanguagemodelsapproximatingnaturallanguagearespecifiedintermsofacontext-sensitivegrammar.
1
Onepopularmeasureofthedifficultyofthetask,combiningthevocabularysizeandthelanguagemodel,isperplexity,looselydefinedasthegeometricmeanofthenumberofwordsthatcanfollowawordafterthelanguagemodelhasbeenapplied(seesectionforadiscussionoflanguagemodelingingeneralandperplexityinparticular).Finally,therearesomeexternalparametersthatcanaffectspeechrecognitionsystemperformance,includingthecharacteristicsoftheenvironmentalnoiseandthetypeandtheplacementofthemicrophone.
ParametersRange
SpeakingModeIsolatedwordstocontinuousspeech
SpeakingStyleReadspeechtospontaneousspeech
EnrollmentSpeaker-dependenttoSpeaker-independent
VocabularySmall(<20words)tolarge(>20,000words)
LanguageModelFinite-statetocontext-sensitive
PerplexitySmall(<10)tolarge(>100)
SNRHigh(>30dB)tolaw(<10dB)
TransducerVoice-cancellingmicrophonetotelephone
Table:
Typicalparametersusedtocharacterizethecapabilityofspeechrecognitionsystems
Speechrecognitionisadifficultproblem,largelybecauseofthemanysourcesofvariabilityassociatedwiththesignal.First,theacousticrealizationsofphonemes,thesmallestsoundunitsofwhichwordsarecomposed,arehighlydependentonthecontextinwhichtheyappear.Thesephoneticvariabilitiesareexemplifiedbytheacousticdifferencesofthephoneme,Atword
boundaries,contextualvariationscanbequitedramatic---makinggasshortagesoundlikegashshortageinAmericanEnglish,anddevoandaresoundlikedevandareinItalian.
Second,acousticvariabilitiescanresultfromchangesintheenvironmentaswellasinthepositionandcharacteristicsofthetransducer.Third,within-speakervariabilitiescanresultfromchangesinthespeaker'sphysicalandemotionalstate,speakingrate,orvoicequality.Finally,differencesinsociolinguisticbackground,dialect,andvocaltractsizeandshapecancontributetoacross-speakervariabilities.
Figureshowsthemajorcomponentsofatypicalspeechrecognitionsystem.Thedigitizedspeechsignalisfirsttransformedintoasetofusefulmeasurementsorfeaturesatafixedrate,
typicallyonceevery10--20msec(seesectionsand11.3forsignalrepresentationanddigitalsignalprocessing,respectively).Thesemeasurementsarethenusedtosearchforthemostlikelywordcandidate,makinguseofconstraintsimposedbytheacoustic,lexical,andlanguagemodels.Throughoutthisprocess,trainingdataareusedtodeterminethevaluesofthemodelparameters.
Figure:
Componentsofatypicalspeechrecognitionsystem.
Speechrecognitionsystemsattempttomodelthesourcesofvariabilitydescribedaboveinseveralways.Atthelevelofsignalrepresentation,researchershavedevelopedrepresentationsthatemphasizeperceptuallyimportantspeaker-independentfeaturesofthesignal,andde-emphasizespeaker-dependentcharacteristics.Attheacousticphoneticlevel,speakervariabilityistypicallymodeledusingstatisticaltechniquesappliedtolargeamountsofdata.Speakeradaptationalgorithmshavealsobeendevelopedthatadaptspeaker-independentacousticmodelstothoseofthecurrentspeakerduringsystemuse,(seesection).Effectsoflinguisticcontextattheacousticphoneticlevelaretypicallyhandledbytrainingseparatemodelsforphonemesindifferentcontexts;thisiscalledcontextdependentacousticmodeling.
Wordlevelvariabilitycanbehandledbyallowingalternatepronunciationsofwordsinrepresentationsknownaspronunciationnetworks.Commonalternatepronunciationsofwords,aswellaseffectsofdialectandaccentarehandledbyallowingsearchalgorithmstofindalternatepathsofphonemesthroughthesenetworks.Statisticallanguagemodels,basedonestimatesofthefrequencyofoccurrenceofwordsequences,areoftenusedtoguidethesearchthroughthemostprobablesequenceofwords.
ThedominantrecognitionparadigminthepastfifteenyearsisknownashiddenMarkov
models(HMM).AnHMMisadoublystochasticmodel,inwhichthegenerationoftheunderlyingphonemestringandtheframe-by-frame,surfaceacousticrealizationsarebothrepresentedprobabilisticallyasMarkovprocesses,asdiscussedinsections,and11.2.Neuralnetworkshavealsobeenusedtoestimatetheframebasedscores;thesescoresarethenintegratedintoHMM-basedsystemarchitectures,inwhathascometobeknownashybridsystems,asdescribedinsection11.5.
Aninterestingfeatureofframe-basedHMMsystemsisthatspeechsegmentsareidentifiedduringthesearchprocess,ratherthanexplicitly.Analternateapproachistofirstidentifyspeechsegments,thenclassifythesegmentsandusethesegmentscorestorecognizewords.Thisapproachhasproducedcompetitiverecognitionperformanceinseveraltasks.
2StateoftheArt
Commentsaboutthestate-of-the-artneedtobemadeinthecontextofspecificapplicationswhichreflecttheconstraintsonthetask.Moreover,differenttechnologiesaresometimesappropriatefordifferenttasks.Forexample,whenthevocabularyissmall,theentirewordcanbemodeledasasingleunit.Suchanapproachisnotpracticalforlargevocabularies,wherewordmodelsmustbebuiltupfromsubwordunits.
PerformanceofspeechrecognitionsystemsistypicallydescribedintermsofworderrorrateE,definedas:
whereNisthetotalnumberofwordsinthetestset,andS,I,andDarethetotalnumberof
substitutions,insertions,anddeletions,respectively.
Thepastdecadehaswitnessedsignificantprogressinspeechrecognitiontechnology.Worderrorratescontinuetodropbyafactorof2everytwoyears.Substantialprogresshasbeenmadeinthebasictechnology,leadingtotheloweringofbarrierstospeakerindependence,continuousspeech,andlargevocabularies.Thereareseveralfactorsthathavecontributedtothisrapidprogress.First,thereisthecomingofageoftheHMM.HMMispowerfulinthat,withtheavailabilityoftrainingdata,theparametersofthemodelcanbetrainedautomaticallytogiveoptimalperformance.
Second,muchefforthasgoneintothedevelopmentoflargespeechcorporaforsystem
development,training,andtesting.Someofthesecorporaaredesignedforacousticphoneticresearch,whileothersarehighlytaskspecific.Nowadays,itisnotuncommontohavetensofthousandsofsentencesavailableforsystemtrainingandtesting.Thesecorporapermitresearcherstoquantifytheacousticcuesimportantforphoneticcontrastsandtodetermineparametersoftherecognizersinastatisticallymeaningfulway.Whilemanyofthesecorpora(e.g.,TIMIT,RM,ATIS,andWSJ;seesection12.3)wereoriginallycollectedunderthesponsorshipoftheU.S.DefenseAdvancedResearchProjectsAgency(ARPA)tospurhumanlanguagetechnologydevelopmentamongitscontractors,theyhaveneverthelessgainedworld-wideacceptance(e.g.,inCanada,France,Germany,Japan,andtheU.K.)asstandardsonwhichtoevaluatespeechrecognition.
Third,progresshasbeenbroughtaboutbytheestablishmentofstandardsforperformanceevaluation.Onlyadecadeago,researcherstrainedandtestedtheirsystemsusinglocallycollecteddata,andhadnotbeenverycarefulindelineatingtrainingandtestingsets.Asaresult,itwasverydifficulttocompareperformanceacrosssystems,andasystem'sperformancetypicallydegradedwhenitwaspresentedwithpreviouslyunseendata.Therecentavailabilityofalargebodyofdatainthepublicdomain,coupledwiththespecificationofevaluationstandards,hasresultedinuniformdocumentationoftestresults,thuscontributingtogreaterreliabilityinmonitoringprogress(corpusdevelopmentactivitiesandevaluationmethodologiesaresummarizedinchapters12and13respectively).
Finally,advancesincomputertechnologyhavealsoindirectlyinfluencedourprogress.Theavailabilityoffastcomp
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中英文献翻译语音识别speech recognition 中英文 翻译 语音 识别 speech