实验一 函数的极限.docx
- 文档编号:30574795
- 上传时间:2023-08-16
- 格式:DOCX
- 页数:17
- 大小:202.30KB
实验一 函数的极限.docx
《实验一 函数的极限.docx》由会员分享,可在线阅读,更多相关《实验一 函数的极限.docx(17页珍藏版)》请在冰豆网上搜索。
实验一函数的极限
数学实验初步实验报告
姓名:
唐沛东
班级:
040131
学号:
20131001252
实验一函数的极限
1.解
(1)>>symsx;
>>f=(2*x^2-2)/(x-1);
>>limit(f,x,1)
ans=4
(2)解>>symsx;
>>f=(x^2+4)/(x-7);
>>limit(f,x,2)
ans=-8/5
(3)解>>symsx;
>>f=(x^2-1)/(x^3-1);
>>limit(f,x,1)
ans=2/3
(4)解>>symsx;
>>f=(x^2+3)/(4*x^2-7);
>>limit(f,x,inf)
ans=1/4
(5)解>>symsx;
>>f=sqrt(x^2+x)-sqrt(x^2+1);
>>limit(f,x,inf)
ans=1/2
(6)解>>symsx;
f=exp(1/x)*sqrt(atan(1/x)+pi);
>>limit(f,x,0,'left')
ans=0
2.解>>symsx;
>>f=x*3^x-1;
>>solve(f)
ans=0.5478
3.解>>symsx;
>>f=x-4*cos(x)+2;
>>solve(f)
ans=
0.79659138676172700274134263493012
4.解>>symsxpq;f=x^4-p*x+q;solve(f)
ans=
(3^(1/2)*(4*q+3*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2))/(6*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(1/6))-(3^(1/2)*(3^(1/2)*6^(1/2)*p*(9*p^2+3^(1/2)*(27*p^4-256*q^3)^(1/2))^(1/2)-4*3^(1/2)*q*(4*q+3*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2)-3*3^(1/2)*(4*q+3*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2)*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2))/(6*(12*q+9*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/4)*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(1/6))
(3^(1/2)*(4*q+3*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2))/(6*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(1/6))+(3^(1/2)*(3^(1/2)*6^(1/2)*p*(9*p^2+3^(1/2)*(27*p^4-256*q^3)^(1/2))^(1/2)-4*3^(1/2)*q*(4*q+3*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2)-3*3^(1/2)*(4*q+3*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2)*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2))/(6*(12*q+9*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/4)*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(1/6))
-(3^(1/2)*(4*q+3*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2))/(6*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(1/6))-(3^(1/2)*(-3*3^(1/2)*(4*q+3*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2)*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3)-4*3^(1/2)*q*(4*q+3*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2)-3^(1/2)*6^(1/2)*p*(9*p^2+3^(1/2)*(27*p^4-256*q^3)^(1/2))^(1/2))^(1/2))/(6*(12*q+9*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/4)*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(1/6))
(3^(1/2)*(-3*3^(1/2)*(4*q+3*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2)*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3)-4*3^(1/2)*q*(4*q+3*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2)-3^(1/2)*6^(1/2)*p*(9*p^2+3^(1/2)*(27*p^4-256*q^3)^(1/2))^(1/2))^(1/2))/(6*(12*q+9*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/4)*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(1/6))-(3^(1/2)*(4*q+3*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(2/3))^(1/2))/(6*(p^2/2+(3^(1/2)*(27*p^4-256*q^3)^(1/2))/18)^(1/6))
例2.8解>>symsx;f=((x-2)/(x+3))^x;limit(f,x,inf)
ans=
1/exp(5)
实验二导数及偏导数计算
1.
(1)解>>symsx;
dy_dx=diff((sqrt(x)+1)*(1/(sqrt(x))-1))
dy_dx=
(1/x^(1/2)-1)/(2*x^(1/2))-(x^(1/2)+1)/(2*x^(3/2))
(2)解>>symsx;
>>dy_dx=diff(x*sin(x)*log(x))
dy_dx=
sin(x)+log(x)*sin(x)+x*cos(x)*log(x)
(3)解>>symsx;
dy_dx=diff(2*[sin(1/(x^2))]^2)
dy_dx=
-(8*cos(1/x^2)*sin(1/x^2))/x^3
(4)解>>symsax;
dy_dx=diff(log(x+sqrt(x^2+a^2)))
dy_dx=
(x/(a^2+x^2)^(1/2)+1)/(x+(a^2+x^2)^(1/2))
2.
(1)解>>symst;
>>dx_dt=diff(t^4);dy_dt=diff(4*t);
>>dy_dx=dy_dt/dx_dt
dy_dx=
1/t^3
(2)解>>symst;
>>dx_dt=diff(log(1+t^2));dy_dt=diff(t-atan(t));
>>dy_dx=dy_dt/dx_dt
dy_dx=
-((t^2+1)*(1/(t^2+1)-1))/(2*t)
4.解>>diff(exp(x)*cos(x),x,4)
ans=
(-4)*exp(x)*cos(x)
5.解>>diff(exp(x)*sin(x),x,2)
ans=
2*exp(x)*cos(x)
>>diff(exp(x)*sin(x),x,1)
ans=
exp(x)*cos(x)+exp(x)*sin(x)
所以y’’-2*y’+2y=0
6.解
(1)>>symsxy;
>>diff(x^2*sin(x*y),x)
ans=
2*x*sin(x*y)+x^2*y*cos(x*y)
>>symsxy;
diff(x^2*sin(x*y),y)
ans=
x^3*cos(x*y)
(2)解>>symsxyz;
>>diff((x/y)^z,x)
ans=
(z*(x/y)^(z-1))/y
>>symsxyz;
diff((x/y)^z,y)
ans=
-(x*z*(x/y)^(z-1))/y^2
>>symsxyz;
diff((x/y)^z,z)ans=
log(x/y)*(x/y)^z
实验三积分
1.解>>symsx
y=[(x*x)/(x+1),sin(x)/sqrt(1+(sin(x))^2),1/(x*x+5),(x+1)/(x*x+x+1),x*x*exp(-2*x),asin(x)/(x*x)];
int(y,x)
ans=
[log(x+1)-x+x^2/2,i*log((sin(x)^2+1)^(1/2)+i*cos(x)),(5^(1/2)*atan((5^(1/2)*x)/5))/5,log(x^2+x+1)/2+(3^(1/2)*atan((2*3^(1/2)*x)/3+3^(1/2)/3))/3,-(4*x^2+4*x+2)/(8*exp(2*x)),-atanh(1/(1-x^2)^(1/2))-asin(x)/x]
2.解
>>symsx;int(x*log(x),1,exp
(1))
ans=
(9366741398929500034245406117369*log(3060513257434037/1125899906842624))/25353012004564588029934064107528099090798701270632748702911993/5070602400912917605986812821504
symsx;int(x/(sin(x))^2,pi*4,pi*3)ans=-Inf
symsx;int(sin(log(x)),1,exp
(1))
ans=
(1125899906842624/3060513257434037)^i*((3060513257434037*i)/4503599627370496-3060513257434037/4503599627370496)-(3060513257434037/1125899906842624)^i*((3060513257434037*i)/4503599627370496+3060513257434037/4503599627370496)+1/2
3.>>symt;symsareal;dx_dt=diff(a*(t-sin(t)),t)
dx_dt=
-a*(cos(t)-1)
>>int(a*(1-cos(t))*dx_dt,0,2*pi)
ans=
3*pi*a^2
4.
>>symsxy;int(int((x+y),y,-sqrt(1-x^2),sqrt(1-x^2)),x,-1,1)
ans=
0
>>symsar;int(int(r^3,r,0,cos(a)),a,-pi/2,pi/2)
ans=
(3*pi)/32
5.解>>symsar;int(int(r^3,r,0,cos(a)),a,-pi/2,pi/2)
ans=
(3*pi)/32
symsx;int((x^2-x^4)+2*x*(x^2+x^4),0,2)
ans=128/5
实验六矩阵与线性方程
解
>>a=[120;011;-123]
a=
120
011
-123
>>rank(a)
ans=3
>>a=[25311743;759453132;759454134;25322048]
a=
25311743
759453132
759454134
25322048
>>rank(a)
ans=3
2.
解法一>>A=[22-1;1-24;582];B=inv(A)
B=
0.66670.2222-0.1111
-0.3333-0.16670.1667
-0.33330.11110.1111
解法二:
functiony=companf(x)
[n,m]=size(x);
y=[];
forj=1:
n;
a=[];
fori=1:
n;
x1=det(x([1:
i-1,i+1:
n],[1:
j-1,j+1:
n]))*(-1)^(i+j);
a=[a,x1];
end
y=[y;a];
end
A=[22-1;1-24;582];
>>C=1/det(A)*companf(A)
C=
0.66670.2222-0.1111
-0.3333-0.16670.1667
-0.33330.11110.1111
解法一:
>>A=[1234;2312;111-1;10-2-6];
B=
22-6-2617
-17520-13
-102-1
4-1-53
解法二:
>>A=[1234;2312;111-1;10-2-6];
>>C=1/det(A)*companf(A)
C=
22-6-2617
-17520-13
-102-1
4-1-53
解法一:
>>A=[1111;11-1-1;1-11-1;1-1-11];
B=
0.25000.25000.25000.2500
0.25000.2500-0.2500-0.2500
0.2500-0.25000.2500-0.2500
0.2500-0.2500-0.25000.2500
解法二:
>>A=[1111;11-1-1;1-11-1;1-1-11];
>>C=1/det(A)*companf(A)
C=
0.25000.25000.25000.2500
0.25000.2500-0.2500-0.2500
0.2500-0.25000.2500-0.2500
0.2500-0.2500-0.25000.2500
3.解>>A=[11-1;210;111];B=[113;432;125];
>>X=inv(A)*B
X=
3.00001.5000-2.0000
-2.000006.0000
00.50001.0000
4.解
>>a=[22-11;43-12;83-34;33-2-2];b=[4;6;12;6];
>>x=a\b
x=
0.6429
0.5000
-1.5000
0.2143
>>a=[1-11-1;1-1-11;1-1-22];
>>rref(a)
ans=
1-100
001-1
0000
X1=X2+0.5;X3=X4+0.5;
>>a=[1-21-11;21-12-3;3-2-11-2;2-51-22];
>>rref(a)
ans=
1.0000000.5000-0.8750
01.000000.5000-0.6250
001.0000-0.50000.6250
00000
X1=-0.5X4+0.875X5;X2=-0.5X4+0.625X5;X3=-X3+0.5X4-0.625X5
5.解>>a=[1-1-11;1-11-3;1-10-1;1-1-23];rref(a)
ans=
1-10-1
001-2
0000
0000
实验九常微分方程与级数
1.解>>dsolve('D3y+D2y-2*Dy=x*(exp(x)+4)','x')
ans=
C17*exp(x)-exp(x)*(x/3+(4*x)/(3*exp(x))+(2*x^2)/(3*exp(x))-(C16/3-4/3)/exp(x)-x^2/6)+((4*exp(3*x))/27+(x*exp(2*x))/3-(x*exp(3*x))/9-(x^2*exp(2*x))/3+exp(2*x)*(C16/6-1/6))/exp(2*x)+C18/exp(2*x)
2.解>>dsolve('y^3/Dy+2*(x*x-x*y^2)=0','y
(1)=1','x')
ans=
x^(1/2)/(exp(wrightOmega(pi*i-log(x)-1)/2)*exp(log(x)/2+1/2))
3.解>>symsx;taylor(cos(x),-pi/3,7)
ans=
(3^(1/2)*(pi/3+x))/2-(3^(1/2)*(pi/3+x)^3)/12+(3^(1/2)*(pi/3+x)^5)/240-(pi/3+x)^2/4+(pi/3+x)^4/48-(pi/3+x)^6/1440+1/2
4.解>>symsn;symsum(n*x^(n-1),1,inf)
ans=
piecewise([Re(n)<0,n*zeta(1-n)])
5.解
>>symsn;symsum(n*(3/4)^n,1,inf)
ans=
12
求和得是12,说明该级数收敛。
symsn;symsum((n+1)/(n*(n+2)),1,inf)
ans=
Inf
最后结果是正无穷说明该级数不收敛。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实验一 函数的极限 实验 函数 极限