数学八下第18章平行四边形全章名师教案人教版.docx
- 文档编号:30564764
- 上传时间:2023-08-16
- 格式:DOCX
- 页数:30
- 大小:37.86KB
数学八下第18章平行四边形全章名师教案人教版.docx
《数学八下第18章平行四边形全章名师教案人教版.docx》由会员分享,可在线阅读,更多相关《数学八下第18章平行四边形全章名师教案人教版.docx(30页珍藏版)》请在冰豆网上搜索。
数学八下第18章平行四边形全章名师教案人教版
2017年数学八下第18章平行四边形全章名师教案(人教版)
第十八 平行四边形 1理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系
2探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算
3了解两条平行线之间距离的意义,能度量两条平行线之间的距离
4探索并证明中位线定理 1通过经历平行四边形与各特殊平行四边形之间的联系与区别,使学生进一步认识一般与特殊的关系
2通过经历平行四边形和特殊的平行四边形的性质和判定的探索、证明及相关计算的过程,以及相关问题证明和计算的过程,进一步培养和发展学生合情推理、演绎推理的能力 1通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想
2通过动手实践,积极参与数学活动,对数学有好奇心和求知欲 平行四边形是特殊的四边形,它与三角形一样,既是几何中的基本图形,也是“空间与图形”领域主要的研究对象本内容也是在已经学过的多边形、平行线、三角形的基础上学习的,也可以说是在已有知识的基础上做出的进一步较系统的整理和研究,它是以后我们继续学习其他几何知识的基础本内容主要包括:
平行四边形、特殊的平行四边形其中平行四边形主要探索平行四边形的性质和判定,特殊的平行四边形主要介绍了矩形、菱形、正方形,并根据定义探索它们的性质和判定 【重点】 理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题
【难点】 分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证 1关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系
本概念比较多,概念之间联系非常密切,关系复杂由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质如有的学生不知道正方形既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条的错误教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系在原有属概念基础上附加一些条(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念;同时在原有属概念的性质和判定方法的基础上,研究种概念的性质和判定方法弄清这些关系,最好是用图示的办法在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系,即内涵越小,外延越大;反之外延越小,内涵越大例如,正方形的性质中,包含四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大弄清了各种特殊平行四边形的概念,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了
2进一步培养学生的合情推理能力和演绎推理能力
从培养学生的推理论证能力的角度说,本处于学生初步掌握了推理论证方法的基础上,进一步巩固和提高的阶段本内容比较简单,证明方法相对比较单一,学生前面已经进行了一些推理证明的训练但这种训练只是初步,要进一步巩固和提高教学中同样要重视推理论证的教学,进一步提高学生的合情推理能力和演绎推理能力在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出另外,为了巩固并提高学生的推理论证能力,本定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论另外也有一些字叙述的证明题,要求学生自己写出已知、求证,再进行证明这些对学生的推理能力要求较高,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展181平行四边形
1811平行四边形的性质(2时)
1812平行四边形的判定(3时)时
182特殊的平行四边形
1821矩形(2时)
1822菱形(2时)
1823正方形(1时)时
单元概括整合1时
181 平行四边形 1理解平行四边形的概念,探究并掌握平行四边形的边、角、对角线的性质
2理解并掌握平行四边形的判定条,能利用平行四边形的判定条证明四边形是平行四边形
3掌握三角形的中位线的概念和定理 1在运用平行四边形的性质和平行四边形的判定方法及三角形的中位线定理的过程中,进一步培养和发展学生自主学习能力及应用数学的意识,通过对平行四边形判定方法的探究,提高学生解决问题的能力
2通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生动手能力及合情推理能力,使学生会将平行四边形的问题转化成三角形的问题,渗透转化与化归意识
通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想 让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度 【重点】 平行四边形的性质与判定方法的探究和运用,以及三角形中位线定理的理解和应用
【难点】 平行四边形的判定与性质定理的综合运用
1811 平行四边形的性质 1理解平行四边形的概念
2探究并掌握平行四边形的边、角、对角线的性质
3利用平行四边形的性质解决简单的实际问题 通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想 让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度 【重点】 平行四边形的概念和性质的探索
【难点】 平行四边形性质的运用
第时 1理解平行四边形的定义及有关概念
2探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明
3了解平行线间距离的概念 1经历利用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维
2在进行性质探索的活动过程中,发展学生的探究能力
3在性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和逻辑思维能力 在性质应用过程中培养独立思考的习惯,让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度 【重点】 平行四边形边、角的性质探索和证明
【难点】 如何添加辅助线将平行四边形问题转化成三角形问题解决的思想方法 【教师准备】 教学中出示的教学插图和例题的投影图片
【学生准备】 方格纸,量角器,刻度尺
导入一:
[过渡语] 前面我们已经学习了许多图形与几何知识,掌握了一些探索和证明几何图形性质的方法,本节开始,我们继续研究生活中的常见图形
我们一起观察下图中的小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏,它们是什么几何图形的形象?
学生观察,积极踊跃发言,教师从实物中抽象出平行四边形
本节我们主要研究平行四边形的定义及有关概念,探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明
[设计意图] 通过图片展示,让学生真切感受生活中存在大量平行四边形的原型,进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程
导入二:
(出示本农田鸟瞰图) 观察前图,你能从图中找出我们熟悉的几何图形吗?
学生自由说出图中的几何图形,教师结合学生说到的图中包含长方形、正方形等,明确本主要研究对象——平行四边形
[过渡语] 下面我们认识特殊的四边形——平行四边形
[设计意图] 以农田鸟瞰图作为本的前图,学生可以见识各种四边形的形状,通过查找长方形、正方形、平行四边形等,为进一步比较系统地学习这些图形做准备,并明确本的学习任务 1平行四边形的定义
思路一
提问:
你知道什么样的图形叫做平行四边形吗?
教师引导学生回顾小学学习过的平行四边形的概念:
两组对边分别平行的四边形叫做平行四边形说明定义的两方面作用:
既可以作为性质,又可以作为判定平行四边形的依据
追问:
平行四边形如何好记好读呢?
画出图形,教师示范后,学生结合图练习,并提醒学生注意字母的顺序要按照顶点的顺序记
平行四边形用“▱”表示,平行四边形ABD,记作“▱ABD” 如右图所示,引导学生找出图中的对边,对角
对边:
AD与B,AB与D;对角:
∠A与∠,∠B与∠D
进一步引导学生总结:
四边形中不相邻的边,也就是没有公共顶点的边叫做对边;没有公共边的角,叫做对角
[设计意图] 给出定义,强调定义的作用,让学生结合图形认识“对角”“对边”,为学习性质做好准备
思路二
请举出你身边存在的平行四边形的例子
学生举出生活中常见的例子如小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏…… 教师点评,画出图形,如右图所示
提问:
(1)你能说出平行四边形的定义吗?
(2)你能表示平行四边形吗?
(3)你能用符号语言描述平行四边形的定义吗?
学生阅读教材第41页,点名学生回答以上问题,教师进一步讲解:
(1)两组对边分别平行的四边形叫做平行四边形概念中有两个条:
①是一个四边形;②两组对边分别平行
(2)指出表示平行四边形错误的情况,如▱ADB
(3)作为性质:
∵四边形ABD是平行四边形,∴AD∥B,AB∥D
作为判定:
∵AD∥B,AB∥D,∴四边形ABD是平行四边形
[设计意图] 学生结合实例和教材中的图片,师引导学生归纳这些四边形的共同特征,即:
两组对边分别平行
2平行四边形边、角的性质
思路一
[过渡语] 同学们回忆我们的学习经历,研究几何图形的一般思路是什么?
一起回顾全等三角形的学习过程,得出研究的一般过程:
先给出定义,再研究性质和判定教师进一步指出:
性质的研究,其实就是对边、角等基本要素的研究
提问:
平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?
教师画出图形,如右图所示,引导学生通过观察、度量,提出猜想
猜想1:
四边形ABD是平行四边形,那么AB=D,AD=B
猜想2:
四边形ABD是平行四边形,那么∠A=∠,∠B=∠D
追问:
你能证明这些结论吗?
学生讨论,发现不添加辅助线可以证明猜想2
∵AB∥D,∴∠A+∠D=180°,
∵AD∥B,∴∠A+∠B=180°,
∴∠B=∠D
同理可得∠A=∠
在学生遇到困难时,教师引导学生构造全等三角形进行证明
[过渡语] 我们知道,利用全等三角形的对应边、对应角都相等是证明线段相等、角相等的一种重要方法 学生尝试,连接平行四边形的对角线,并证明猜想,如右图所示
证明:
连接A
∵AD∥B,AB∥D,
∴∠1=∠2,∠3=∠4
又A是△AB和△DA的公共边,
∴△AB≌△DA
∴AD=B,AB=D
∠B=∠D
∵∠BAD=∠1+∠4,∠DB=∠2+∠3,
∠1+∠4=∠2+∠3,
∴∠BAD=∠DB
引导学生归纳平行四边形的性质:
平行四边形的对边相等;
平行四边形的对角相等
追问:
通过证明,发现上述两个猜想正确这样得到平行四边形的两个重要性质你能说出这两个命题的题设与结论,并运用这两个性质进行推理吗?
教师引导学生辨析定理的题设和结论,明确应用性质进行推理的基本模式:
∵四边形ABD是平行四边形(已知),
∴AB=D,AD=B(平行四边形的对边相等),
∠A=∠,∠B=∠D(平行四边形的对角相等)
[设计意图] 让学生领悟证明线段相等或角相等通常采用证明三角形全等的方法,而图形中没有三角形,只有四边形,我们需要添加辅助线,构造全等三角形,将四边形问题转化为三角形问题解决,突破难点进而总结、提炼出将四边形问题化为三角形问题的基本思路
[知识拓展]
(1)运用平行四边形的这两条性质可以直接证明线段相等和角相等
(2)四边形的问题,常常通过连接对角线转化成三角形的问题解决 (教材例1)如图所示,在▱ABD中,DE⊥AB,BF⊥D,垂足分别为E,F求证AE=F
引导学生分析:
要证明线段AE=F,它不是平行四边形的对边,无法直接用平行四边形的性质证明,考虑证明△ADE≌△BF由题意容易得到∠AED=∠FB=90°,再根据平行四边形的性质可以得出∠A=∠,AD=B在此基础上,引导学生写出证明过程,并组织学生进行点评
证明:
∵四边形ABD是平行四边形,
∴∠A=∠,AD=B
又∠AED=∠FB=90°,
∴△ADE≌△BF
∴AE=F
[设计意图] 应用性质进行推理,体会得到证明思路的方法
思路二
1提问:
根据定义画一个平行四边形ABD,并观察这个四边形除了“两组对边分别平行”外,它的边、角之间还有哪些关系?
度量一下,是不是和你的猜想一致?
AB= B= D= AD= 猜想:
∠A= ∠B= ∠= ∠D= 猜想:
小组合作完成,交流自己的猜想
教师强调平行四边形的对边、邻边、对角、邻角等概念,再引导学生归纳:
平行四边形的对边相等;
平行四边形的对角相等
2你能证明你发现的上述结论吗?
已知:
如图
(1)所示,四边形ABD中,AB∥D,AD∥B
求证:
(1)AD=B,AB=D;
(2)∠B=∠D,∠BAD=∠DB 小组讨论,发现:
需要连接对角线,将平行四边形的问题转化成两个三角形全等的问题解决
证明:
(1)连接A,如图
(2)所示
∵AD∥B,AB∥D,
∴∠1=∠2,∠3=∠4
又A是△AB和△DA的公共边,
∴△AB≌△DA
∴AD=B,AB=D
(2)∵△AB≌△DA(已证),
∴∠B=∠D
∵∠BAD=∠1+∠4,∠DB=∠2+∠3,
∠1+∠4=∠2+∠3,
∴∠BAD=∠DB
一组代表发言后,另一小组补充,我们发现不作辅助线也可以证明平行四边形的对角相等
∵AB∥D,∴∠BAD+∠D=180°,
∵AD∥B,∴∠BAD+∠B=180°,
∴∠B=∠D
同理可得∠BAD=∠DB
教师根据学生的证明情况进行评价、总结
证明线段相等或角相等时,通常证明三角形全等,图中没有三角形怎么办?
一般是连接对角线将四边形的问题转化为三角形的问题
引导学生将字语言转化为符号语言表述,并进行笔记
∵四边形ABD是平行四边形(已知),
∴AB=D,AD=B(平行四边形的对边相等),
∠A=∠,∠B=∠D(平行四边形的对角相等) (补充)如图,在▱ABD中,A是平行四边形ABD的对角线
(1)请你说出图中的相等的角、相等的线段;
(2)对角线A需添加一个什么条,能使平行四边形ABD的四条边相等?
学生认真读题、思考、分析、讨论,得出有关结论
因为平行四边形的对边相等,对角相等所以AB=D,AD=B,∠DAB=∠BD,∠B=∠D,又因为平行四边形的两组对边分别平行,所以∠DA=∠BA,∠DA=∠BA
教师根据学生回答,板书有关正确的结论
解决第
(2)个问题时,学生思考、交流、讨论得出:
只要添加A平分∠DAB即可
说明理由:
因为平行四边形的两组对边分别平行,所以∠DA=∠BA,而∠DA=∠BA,所以∠DA=∠DA,所以AD=D,又因为平行四边形的对边相等,所以AB=D=AD=B
[设计意图] 学生通过亲自动手,提出猜想,验证猜想,得出结论,并初步应用
3平行线间的距离
[过渡语] 距离是几何中的重要度量之一前面我们已经学习了点与点之间的距离、点到直线的距离,那么平行线间的距离又是怎样的呢?
思路一
提问:
在教材的例1中,DE=BF吗?
学生思考,都容易发现:
由△ADE≌△BF,容易得到DE=BF 追问:
如图所示,直线a∥b,A,D为直线a上任意两点,点A到直线b的距离AB和点D到直线b的距离D相等吗?
为什么?
学生讨论,发现容易证明AB∥D,由已知得AD∥B,所以四边形ABD是平行四边形,所以AB=D
教师引导归纳:
如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等此时教师适时介绍两条平行线间的距离的概念及性质
两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等
学生结合图指出:
a∥b,点A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离
教师点评,并强调:
任意两条平行线之间的距离都是存在的、唯一的,都是夹在两条平行线之间的最短的线段的长度
[设计意图] 结合例1的进一步追问,自然引出平行线间距离的概念
思路二
请同学们拿出方格纸,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线
老师边看边指导学生画图
追问:
请同学们用刻度尺量一下方格纸上两平行线间的所有垂线段的长度,你发现了什么现象?
学生发现:
平行线间的所有垂线段的长度相等
教师引导归纳:
如果两条直线平行,那么一条直线上所有点到另一条直线的距离都相等此时教师适时介绍两条平行线间的距离的概念及性质
两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等 如右图所示,用符号语言表述为:
∵l1∥l2,AB⊥l2,D⊥l2,
∴AB=D
教师进一步强调:
两平行线l1,l2之间的距离是指什么?
指在一条直线l1上任取一点A,过A作AB⊥l2于点B,线段AB的长度叫做两平行线l1,l2间的距离
引导学生归纳:
两平行线之间的距离、点与直线的距离、点与点之间的距离的区别与联系
两平行线间的距离ͤ点到直线的距离ͤ点与点之间的距离
l1,l2间的距离转化为点A到l2间的距离,再转化为点A到点B的距离
追问:
如果AB,D是夹在两平行线l1,l2之间的两条平行线段,那么AB和D仍相等吗?
教师引导学生思考:
(出示教材第43页图181-)如图所示,a∥b,∥d,,d与a,b分别相交于A,B,,D四点由平行四边形的概念和性质可知,四边形ABD是平行四边形,AB=D说明:
两条平行线之间的任何两条平行线段都相等
[设计意图] 借助学生熟悉的方格纸引出平行线间距离的概念,浅显易懂,并注重两平行线间的距离、点到直线的距离、点与点间的距离之间的知识整合
[知识拓展]
(1)当两条平行线确定后,两条平行线之间的距离是一定值,不随垂线段位置的变化而改变
(2)平行线之间的距离处处相等,因此在作平行四边形的高时,可以灵活选择位置
4例题讲解
(补充)在▱ABD中,B边上的高为4,AB=,A=2,试求▱ABD的周长
引导学生根据题意作图分析,教师根据学生考虑不周全的问题进行引导,明确思路后学生写解答过程
〔解析〕 本题考查了平行四边形的性质及勾股定理的应用,解题的关键是分别画出符合题意的图形设B边上的高为AE,分AE在▱ABD的内部和AE在▱ABD的外部两种情况计算
解:
在▱ABD中,AB=D=,AD=B
设B边上的高为AE
(1)若AE在▱ABD的内部,如图①所示,
在Rt△ABE中,AB=,AE=4,
根据勾股定理,得:
BE====3;
在Rt△AE中,A=2,AE=4,
根据勾股定理,得:
E====2
∴B=BE+E=3+2=
∴▱ABD的周长为2×(+)=20
(2)若AE在▱ABD的外部,如图②所示,
同理可得BE=3,E=2,
∴B=BE-E=3-2=1,
∴▱ABD的周长为2×(+1)=12
综上,▱ABD的周长为20或12
[解题策略] 本题相当于已知一个三角形的两条边以及第三条边上的高,求第三条边的长度,因为三角形的高可能在三角形的内部、也可能在三角形的外部,所以作图时应分两种情况讨论,如下图所示
本节我们主要学习了平行四边形的定义,探索了平行四边形的两个特征,同时还学习了平行线间的距离,平行线的一些特征
平行四边形的定义:
两组对边分别平行的四边形叫做平行四边形
平行四边形的性质:
平行四边形的对边相等;平行四边形的对角相等
平行线间的距离:
两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离
平行线间的距离相等,两条平行线之间的任何两条平行线段都相等 1已知▱ABD中,∠A+∠=200°,则∠B的度数是 ( )
A100° B160° 80° D60°
解析:
∵∠A+∠=200°,∠A=∠,∴∠A=100°,又AD∥B,∴∠A+∠B=180°,∴∠B=180°-∠A=80°故选 2如图所示,在平行四边形ABD中,EF∥B,GH∥AB,EF,GH相交于点,则图中共有平行四边形的个数为 ( )
A6 B7 8 D9
解析:
图中的平行四边形有:
平行四边形AEG、平行四边形BHE、平行四边形HF、平行四边形FDG、平行四边形ABHG、平行四边形HGD、平行四边形AEFD、平行四边形BEF、平行四边形ABD故选D 3如图所示,在▱ABD中,AD=2AB,E平分∠BD交AD边于点E,且AE=3,则AB的长为 ( )
A4 B3 D2
解析:
∵四边形ABD是平行四边形,∴AB=D,AD∥B,∴∠DE=∠BE,∵E平分∠DB,∴∠DE=∠BE,∴∠DE=∠DE,∴DE=D=AB,∵AD=2AB=2D,D=DE,∴AD=2DE,∴AE=DE=3,∴D=AB=DE=3故选B 4如图所示,在▱ABD中,△AB和△DB的面积的大小关系是
解析:
∵两平行线AD,B间的距离相等,∴△AB与△DB是同底等高的两个三角形,∴它们的面积相等故填相等 如图所示,已知在平行四边形ABD中,∠=60°,DE⊥AB于E,DF⊥B于F
(1)求∠EDF的度数;
(2)若AE=4,F=7,求平行四边形ABD的周长
解:
(1)∵四边形ABD是平行四边形,∴AB∥D,∠A=∠=60°,∴∠+∠B=180°∵∠=60°,∴∠B=180°-∠=120°∵DE⊥AB,DF⊥B,∴∠DEB=∠DFB=90°,∴∠EDF=360°-∠DEB-∠DFB-∠B=60°
(2)在Rt△ADE和Rt△DF中,∠A=∠=60°,∴∠ADE=∠DF=30°,∴AD=2AE=8,D=2F=14,∴平行四边形ABD的周长为2×(8+14)=44 第1时
1平行四边形的定义
2平行四边形边、角的性质
例1 例2
3平行线间的距离
4例题讲解
例3一、教材作业
【必做题】
教材第43页练习第1,2题;教材第49页习题181第1,2题
【选做题】
教材第0页习题181第8题
二、后作业
【基础巩固】
1如图所示,在平行四边形ABD中,∠B=110°,延长AD至F,延长D至E,连接EF,则∠E+∠F等于 ( )
A110° B30° 0° D70°2如图所示,l1∥l2,BE∥F
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 下第 18 平行四边形 名师 教案 人教版