高三数学概率与统计知识点.docx
- 文档编号:30552662
- 上传时间:2023-08-16
- 格式:DOCX
- 页数:17
- 大小:29.76KB
高三数学概率与统计知识点.docx
《高三数学概率与统计知识点.docx》由会员分享,可在线阅读,更多相关《高三数学概率与统计知识点.docx(17页珍藏版)》请在冰豆网上搜索。
高三数学概率与统计知识点
高三数学概率与统计知识点
【篇一:
高三数学概率与统计知识点】
第1章随机事件及其概率
(1)排列组合公式)!
(!
nmmpnm?
?
?
?
从m个人中挑出n个人进行排列的可能数。
)!
(!
n!
nmmcnm?
?
?
?
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):
m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n种方法来完成。
乘法原理(两个步骤分别不能完成这件事):
mn某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由mn种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用?
?
来表示。
基本事件的全体,称为试验的样本空间,用?
?
表示。
一个事件就是由?
?
中的部分点(基本事件?
?
)组成的集合。
通常用大写字母a,b,c,表示事件,它们是?
?
的子集。
?
?
为必然事件,为不可能事件。
不可能事件()的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件()的概率为1,而概率为1的事件也不一定是必然事件。
①关系:
如果事件a的组成部分也是事件b的组成部分,(a发生必有事件b发生):
ba?
?
如果同时有ba?
?
,ab?
?
,则称事件a与事件b等价,或称a等于b:
a=b。
a、b中至少有一个发生的事件:
a?
?
b,或者a+b。
(6)事件的关系与运算属于a而不属于b的部分所构成的事件,称为a与b的差,记为a-b,也可表示为a-ab或者ba,它表示a发生而b不发生的事件。
a、b同时发生:
a?
?
b,或者ab。
a?
?
b=,则表示a与b不可能同时发生,称事件a与事件b互不相容或者互斥。
基本事件是互不相容的。
?
?
-a称为事件a的逆事件,或称a的对立事件,记为a。
它表示a不发生的事件。
互斥未必对立。
②运算:
结合率:
a(bc)=(ab)ca(bc)=(ab)c分配率:
(ab)c=(ac)(bc)(ab)c=(ac)(bc)德摩根率:
?
?
?
?
i?
?
?
?
i?
?
?
?
?
?
11iiaababa?
?
?
?
?
?
,baba?
?
?
?
?
?
(7)概率的公理化定义设?
?
为样本空间,a为事件,对每一个事件a都有一个实数p(a),若满足下列三个条件:
10p(a)1,2p()=13对于两两互不相容的事件?
?
?
?
?
?
?
?
?
?
?
?
常称为可列(完全)可加性。
1a,?
?
ia2a,有?
?
(i?
?
?
?
?
?
?
?
?
?
?
?
11)iiapp?
?
则称p(a)为事件a的概率。
(8)古典概型1?
?
?
?
?
?
n?
?
?
?
?
?
21,?
?
?
?
,2npppn1)(?
?
)(?
?
)(?
?
21?
?
?
?
?
?
?
?
。
设任一事件a,它是由m?
?
?
?
(?
?
?
?
?
?
?
?
?
?
)21,组成的,则有p(a)=?
?
)(?
?
)(?
?
21m?
?
?
?
?
?
=)(?
?
)(?
?
)(?
?
21mppp?
?
?
?
?
?
?
?
nm?
?
基本事件总数所包含的基本事件数a?
?
(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。
对任一事件a,)()()(?
?
?
?
lalap。
其中l为几何度量(长度、面积、体积)。
(10)加法公式p(a+b)=p(a)+p(b)-p(ab)当p(ab)=0时,p(a+b)=p(a)+p(b)(11)减法公式p(a-b)=p(a)-p(ab)当b?
?
a时,p(a-b)=p(a)-p(b)当a=时,p(b)=1-p(b)(12)条件概率定义设a、b是两个事件,且p(a)0,则称)()(ap)abp为事件a发生条件下,事件b发生的条件概率,记为?
?
)/(abp)((apabp。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如p(/b)=1?
?
p(b/a)=1-p(b/a)乘法公式:
)(abp?
?
更一般地,对事件a1,a2,an,若p(a1a2an-1)0,则有(aap)()(pap?
?
)1?
?
。
①两个事件的独立性)(abp(13)乘法公式)/()(abpap21na)|()|213121aaapaa21|(aaapnna(14)独立性设事件a、b满足)()(bpap?
?
,则称事件a、b是相互独立的。
若事件a、b相互独立,且()|(p0)(?
?
ap,则有)()()()()()bpapbpapaabpabp?
?
?
?
?
?
若事件a、b相互独立,则可得到a与b、a与b、a与b也都相互独立。
必然事件?
?
和不可能事件与任何事件都相互独立。
与任何事件都互斥。
②多个事件的独立性设abc是三个事件,如果满足两两独立的条件,p(ab)=p(a)p(b);p(bc)=p(b)p(c);p(ca)=p(c)p(a)并且同时满足p(abc)=p(a)p(b)p(c)那么a、b、c相互独立。
对于n个事件类似。
bb,,,21?
?
满足nbbb,,,21?
?
两两互不相容,)(bpna1?
?
,则有|()()|()()(211apbpbapbpap?
?
?
?
(15)全概公式设事件nb1),,2,1?
?
(0nii?
?
?
?
,2?
?
iib?
?
)|()()2nnbapbpb?
?
?
?
?
?
。
(16)贝叶斯公式设事件1b,2b,,b,,nnb及a满足11b,2nb两两互不相容,)(bip0,?
?
i1,2,,n,2则?
?
i1?
?
iba?
?
,0)(?
?
ap,?
?
?
?
j?
?
njjiiibapbpbapbpabp1)/()()/()()/(,i=1,2,n。
此公式即为贝叶斯公式。
),(1?
?
i,2,,n),通常叫先验概率。
n),通常称为后验概率。
贝叶斯公式反映了因果的概率规律,并作出了(ibp)/(abpi,(1?
?
i,2,,由果朔因的推断。
我们作了n次试验,且满足?
?
每次试验只有两种可能结果,a发生或a不发生;?
?
n次试验是重复进行的,即a发生的概率每次均一样;(17)伯努利概型?
?
每次试验是独立的,即每次试验a发生与否与其他次试验a发生与否是互不影响的。
这种试验称为伯努利概型,或称为n重伯努利试验。
用p表示每次试验a发生的概率,则a发生的概率为qp?
?
?
?
1,用)(kpn表示n重伯努利试验中a出现)0(knk?
?
?
?
次的概率,knkknnqpkpc?
?
?
?
)(,nk,,2,1,0?
?
?
?
。
第二章随机变量及其分布
(1)离散型随机变量的分布律设离散型随机变量x的可能取值为xk(k=1,2,)且取各个值的概率,即事件(x=xk)的概率为p(x=xk)=pk,k=1,2,,则称上式为离散型随机变量x的概率分布或分布律。
有时也用分布列的形式给出:
?
?
?
?
,,,)(21kkpppxxp?
?
。
显然分布律应满足下列条件:
?
?
?
?
,,,|21kxxxx
(1)0?
?
kp,?
?
2,1?
?
k,
(2)?
?
?
?
?
?
?
?
11kkp。
(2)连续型随机变量的分布密度设)(xf是随机变量x的分布函数,若存在非负函数xdxxf)(,f)(xf,对任意实数x,有?
?
?
?
?
?
?
?
xf)(则称x为连续型随机变量。
率密度。
密度函数具有下面4个性质:
0)(?
?
xf。
?
?
?
?
)(dxxf)(x称为x的概率密度函数或密度函数,简称概12?
?
?
?
?
?
?
?
1。
(3)离散与连续型随机变量的关系dxxfdxxxxpxxp)()()(?
?
?
?
?
?
?
?
?
?
?
?
积分元dxxf)(在连续型随机变量理论中所起的作用与kkpxxp?
?
?
?
)(在离散型随机变量理论中所起的作用相类似。
(4)分布函数设x为随机变量,x是任意实数,则函数)()(xxpxf?
?
?
?
称为随机变量x的分布函数,本质上是一个累积函数。
)()()(afbfbxap?
?
?
?
?
?
?
?
可以得到x落入区间],(ba的概率。
分布函数)(xf表示随机变量落入区间(,x]内的概率。
分布函数具有如下性质:
1,1)(0?
?
?
?
xf?
?
?
?
?
?
?
?
?
?
?
?
x;2)(xf是单调不减的函数,即21xx?
?
时,有?
?
)(1xf)(2xf;30)(lim?
?
x)(?
?
?
?
?
?
?
?
?
?
?
?
xff,1)(lim?
?
x)(?
?
?
?
?
?
?
?
?
?
?
?
xff;4)()0(xfxf?
?
?
?
,即)(xf是右连续的;5)0()()(?
?
?
?
?
?
?
?
xfxfxxp。
对于离散型随机变量,?
?
?
?
xk?
?
xkpxf)(;对于连续型随机变量,?
?
?
?
?
?
?
?
xdxxfxf)()(。
(5)八大分布0-1分布p(x=1)=p,p(x=0)=q二项分布在n重贝努里试验中,设事件a发生的概率为p。
事件a发生的次数是随机变量,设为x,则x可能取值为n,,2,1,0?
?
。
knkknnqpckpkxp?
?
?
?
?
?
?
?
)()(,其中nkppq,,2,1,0,10,1?
?
?
?
?
?
?
?
?
?
?
?
,则称随机变量x服从参数为n,p的二项分布。
记为),(~pnbx。
当1?
?
n时,kkqpkxp?
?
?
?
?
?
1)(,1.0?
?
k,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。
泊松分布设随机变量x的分布律为?
?
?
?
?
?
?
?
?
?
ekkxpk!
)(,0?
?
?
?
,?
?
2,1,0?
?
k,则称随机变量x服从参数为?
?
的泊松分布,记为)(?
?
~?
?
x或者p(?
?
)。
泊松分布为二项分布的极限分布(np=,n)。
超几何分布),min(,2,1,0,)(nmllkccnnckxpkm?
?
nnkm?
?
?
?
?
?
?
?
?
?
?
?
?
?
随机变量x服从参数为n,n,m的超几何分布,记为h(n,n,m)。
几何分布?
?
3,2,1?
?
)(1?
?
?
?
?
?
kpqkxpk,其中p0,q=1-p。
随机变量x服从参数为p的几何分布,记为g(p)。
均匀分布设随机变量x的值只落在[a,b]内,其密度函数1,即)(xf在[a,b]上为常数ab?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
0,1)(abxf其他,则称随机变量x在[a,b]上服从均匀分布,记为x~u(a,b)。
分布函数为xdxxfxf)()(?
?
?
?
?
?
?
?
?
?
当ax1x2b时,x落在区间(21,xx)内的概率为abxxxxxp?
?
?
?
?
?
?
?
?
?
1221)(。
0,xa,ax?
?
ab?
?
axb1,xb。
axb指数分布0,其中x的分布函数为0?
?
?
?
,则称随机变量x服从参数为?
?
的指数分布。
1e?
?
记住积分公式:
?
?
?
?
?
?
!
0?
?
ndxexxn?
?
正态分布设随机变量x的密度函数为222?
?
)(2?
?
?
?
1)(?
?
?
?
?
?
?
?
?
?
xexf,?
?
?
?
?
?
?
?
?
?
?
?
x,其中?
?
、0?
?
为常数,则称随机变量x服从参数为?
?
、?
?
的正态分布或高斯(gauss)分布,记为),?
?
(?
?
~2nx。
)(xf具有如下性质:
1)(xf的图形是关于?
?
?
?
x对称的;2当?
?
?
?
x时,?
?
?
?
2?
?
(1)?
?
f为最大值;若f),?
?
(?
?
1~2nxx(,则x的分布函数为dte?
?
?
?
。
。
xt?
?
?
?
2?
?
?
?
?
?
22)(2?
?
?
?
)?
?
参数0?
?
?
?
、1?
?
?
?
时的正态分布称为标准正态分布,记为)1,0()?
?
~n(x?
?
x,其密度函数记为21e?
?
,22x?
?
?
?
?
?
?
?
?
?
?
?
?
?
x,分布函数为?
?
?
?
?
?
?
?
?
?
?
?
?
?
xtdtex222?
?
1)(。
)(x是不可求积函数,其函数值,已编制成表可供查用。
1。
?
?
?
?
x~n?
?
?
?
?
?
?
?
(-x)=1-(x)且(0)=2如果x~,(?
?
?
?
n)2,则?
?
?
?
?
?
?
?
?
?
)1,0(x。
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
1221)(xxxxp。
?
?
)(xf,xe?
?
?
?
?
?
0?
?
x,0?
?
x,?
?
)(xf,x?
?
?
?
0?
?
x,,0x0。
(6)分位数下分位表:
?
?
?
?
?
?
=?
?
)(xp;上分位表:
?
?
?
?
?
?
=?
?
)(xp。
(7)函数分布离散型已知x的分布列为x?
?
)ix,?
?
y?
?
),2x?
?
?
?
(,,,,,,,)(2121nnipg?
?
ppxxxx)xgyp?
?
,(xy?
?
的分布列((1xgi互不相等)如下:
?
?
),(x,?
?
?
?
,,,(),)(21nnippp)ggyyp若有某些?
?
(ixg相等,则应将对应的ip相加作为)(ixg的概率。
连续型先利用x的概率密度fx(x)写出y的分布函数fy(y)=p(g(x)y),再利用变上下限积分的求导公式求出fy(y)。
第三章二维随机变量及其分布
(1)联合分布离散型如果二维随机向量?
?
(x,y)的所有可能取值为至多可列个有序对(x,y),则称?
?
为离散型随机量。
设?
?
=(x,y)的所有可能取值为),2,1?
?
)(,(?
?
jiyxji,且事件{?
?
=),(jiyx}的概率为pij,,称),2,1?
?
(ij)},(),{(?
?
?
?
?
?
jipyxyxpji为?
?
=(x,y)的分布律或称为x和y的联合分布律。
联合分布有时也用下面的概率分布表来表示:
yxy1y2yjx1p11p12p1jx2p21p22p2j?
?
?
?
?
?
?
?
?
?
xipi1ijp?
?
?
?
?
?
?
?
?
?
这里pij具有下面两个性质:
(1)pij0(i,j=1,2,);?
?
?
?
ij
(2).1?
?
ijp连续型对于二维随机向量),(yx?
?
?
?
,如果存在非负函数),)(,(?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
yxyxf,使对任意一个其邻边分别平行于坐标轴的矩形区域d,即d={(x,y)|axb,cyd}有?
?
?
?
d?
?
?
?
dxdyyxfdyxp,),(}),{(则称?
?
为连续型随机向量;并称f(x,y)为?
?
=(x,y)的分布密度或称为x和y的联合分布密度。
分布密度f(x,y)具有下面两个性质:
(1)f(x,y)
(2)?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
.1),(dxdyyxf
(2)二维随机变量的本质(3)联合分布函数)(),(yyxxyyxx?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
设(x,y)为二维随机变量,对于任意实数x,y,二元函数},{),(yyxxpyxf?
?
?
?
?
?
称为二维随机向量(x,y)的分布函数,或称为随机变量x和y的联合分布函数。
分布函数是一个以全平面为其定义域,以事件})(?
?
)(?
?
|)2,?
?
{(211yyxx?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
的概率为函数值的一个实值函数。
分布函数f(x,y)具有以下的基本性质:
(1);1),(0?
?
?
?
yxf
(2)f(x,y)分别对x和y是非减的,即当x2x1时,有f(x2,y)f(x1,y);当y2y1时,有f(x,y2)f(x,y1);(3)f(x,y)分别对x和y是右连续的,即);0,(),(),,0(),(?
?
?
?
?
?
?
?
yxfyxfyxfyxf(4).1),(,0),(),(),(?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
fxfyff(5)对于,,2121yyxx?
?
?
?
0)()()()(11211222?
?
?
?
?
?
?
?
yxfyxfyxfyxf,,,,.(4)离散型与连续型的关系dxdyyxfdyyyydxxxxpyyxxp)()()(,,,?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
(5)边缘分布离散型x的边缘分布为),2,1?
?
()(?
?
?
?
?
?
?
?
?
?
j?
?
jipxxppijii;y的边缘分布为),2,1?
?
()(?
?
?
?
?
?
?
?
?
?
i?
?
jipyyppijjj。
连续型x的边缘分布密度为?
?
?
?
?
?
?
?
?
?
?
?
;dyyxfxfx),()(y的边缘分布密度为.),()(?
?
?
?
?
?
?
?
?
?
?
?
dxyxfyfy(6)条件分布离散型在已知x=xi的条件下,y取值的条件分布为;?
?
?
?
?
?
?
?
iijijppxxyy(p)|在已知y=yj的条件下,x取值的条件分布为,)|(jijjippyyxxp?
?
?
?
?
?
?
?
连续型在已知y=y的条件下,x的条件分布密度为)(),()|(yfyxfyxfy?
?
;在已知x=x的条件下,y的条件分布密度为)(),()|(xfyxfxyfx?
?
(7)独立性一般型离散型f(x,y)=fx(x)fy(y)jiijppp?
?
?
?
?
?
有零不独立连续型f(x,y)=fx(x)fy(y)直接判断,充要条件:
①可分离变量②正概率密度区间为矩形二维正态分布,12?
?
?
?
1),(22221?
?
21211221?
?
))(
(2)1(212?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
yyxxeyxf?
?
=0若x1,x2,xm,xm+1,xn相互独立,h,g为连续函数,则:
h(x1,x2,xm)和g(xm+1,xn)相互独立。
特例:
若x与y独立,则:
h(x)和g(y)独立。
例如:
若x与y独立,则:
3x+1和5y-2独立。
随机变量的函数(8)二维均匀分布设随机向量(x,y)的分布密度函数为?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
其他,0),
(1),(dyxsyxfd其中sd为区域d的面积,则称(x,y)服从d上的均匀分布,记为(x,y)~u(d)。
例如图3.1、图3.2和图3.3。
y1d1o1x图3.1y1o2x图3.2ydcoabx图3.3d21d3(9)二维正态分布设随机向量(x,y)的分布密度函数为,12?
?
?
?
1),(22221?
?
21211221?
?
))(
(2)1(212?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
yyxxeyxf其中1||,0,0,21,21?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
是5个参数,则称(x,y)服从二维正态分布,记为(x,y)~n().,,?
?
2221,21?
?
?
?
?
?
?
?
由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,即x~n().(?
?
~),,?
?
22,2211?
?
?
?
ny但是若x~n()(?
?
~),,?
?
22,2211?
?
?
?
ny,(x,y)未必是二维正态分布。
(10)函数分布z=x+y根据定义计算:
)()()(zyxpzzpzfz?
?
?
?
?
?
?
?
?
?
对于连续型,fz(z)=dxxzxf?
?
?
?
?
?
?
?
?
?
?
?
),(两个独立的正态分布的和仍为正态分布(222121,?
?
?
?
?
?
?
?
?
?
?
?
)。
n个相互独立的正态分布的线性组合,仍服从正态分布。
?
?
i?
?
i?
?
iic?
?
?
?
,?
?
iic22?
?
2?
?
z=max,min(x1,x2,xn)若nxxx?
?
21,相互独立,其分布函数分别为)()()(21xfxfxfnxxx?
?
,,则z=max,min(x1,x2,xn)的分布函数为:
)()()()(21maxxfxfxfxfnxxx?
?
?
?
?
?
)](1[)](1[?
?
)](1[1)(21minxfxfxfxfnxxx?
?
?
?
?
?
?
?
?
?
?
?
2?
?
分布设n个随机变量nxxx,,,21?
?
相互独立,且服从标准正态分布,可以证明它们的平方和?
?
?
?
i?
?
nixw12的分布密度为?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
.0,0,0221)(2122uueunufunn我们称随机变量w服从自由度为n的2?
?
分布,记为w~)(2n?
?
,其中.2012dxexnxn?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。
2?
?
分布满足可加性:
设),(2iiny?
?
?
?
则).(~2112kkiinnnyz?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
t分布设x,y是两个相互独立的随机变量,且),(~),1,0(n~2nyx?
?
可以证明函数nyxt/?
?
的概率密度为2121221)(?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
n?
?
?
?
nntnn?
?
tf).(?
?
?
?
?
?
?
?
?
?
?
?
t我们称随机变量t服从自由度为n的t分布,记为t~t(n)。
)()(1nt?
?
nt?
?
?
?
?
?
?
?
f分布设)(~),(~2212nynx?
?
?
?
,且x与y独立,可以证明21//nynxf?
?
的概率密
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 概率 统计 知识点