投资学第10版习题答案06.docx
- 文档编号:30514541
- 上传时间:2023-08-16
- 格式:DOCX
- 页数:16
- 大小:834.80KB
投资学第10版习题答案06.docx
《投资学第10版习题答案06.docx》由会员分享,可在线阅读,更多相关《投资学第10版习题答案06.docx(16页珍藏版)》请在冰豆网上搜索。
投资学第10版习题答案06
投资学第10版习题答案06(总13页)
CHAPTER6:
CAPITALALLOCATIONTORISKYASSETS
PROBLEMSETS
1.(e)Thefirsttwoanswerchoicesareincorrectbecauseahighlyriskaverseinvestorwouldavoidportfolioswithhigherriskpremiumsandhigherstandarddeviations.Inaddition,higherorlowerSharperatiosarenotanindicationofaninvestor'stoleranceforrisk.TheSharperatioissimplyatooltoabsolutelymeasurethereturnpremiumearnedperunitofrisk.
2.(b)Ahigherborrowingrateisaconsequenceoftheriskoftheborrowers’default.Inperfectmarketswithnoadditionalcostofdefault,thisincrementwouldequalthevalueoftheborrower’soptiontodefault,andtheSharpemeasure,withappropriatetreatmentofthedefaultoption,wouldbethesame.However,inrealitytherearecoststodefaultsothatthispartoftheincrementlowerstheSharperatio.Also,noticethatanswer(c)isnotcorrectbecausedoublingtheexpectedreturnwithafixedrisk-freeratewillmorethandoubletheriskpremiumandtheSharperatio.
3.Assumingnochangeinrisktolerance,thatis,anunchangedrisk-aversioncoefficient(A),higherperceivedvolatilityincreasesthedenominatoroftheequationfortheoptimalinvestmentintheriskyportfolio(Equation.Theproportioninvestedintheriskyportfoliowillthereforedecrease.
4.a.Theexpectedcashflowis:
×$70,000)+×200,000)=$135,000.
Withariskpremiumof8%overtherisk-freerateof6%,therequiredrateofreturnis14%.Therefore,thepresentvalueoftheportfoliois:
$135,000/=$118,421
b.Iftheportfolioispurchasedfor$118,421andprovidesanexpectedcashinflowof$135,000,thentheexpectedrateofreturn[E(r)]isasfollows:
$118,421×[1+E(r)]=$135,000
Therefore,E(r)=14%.Theportfoliopriceissettoequatetheexpectedrateofreturnwiththerequiredrateofreturn.
c.IftheriskpremiumoverT-billsisnow12%,thentherequiredreturnis:
6%+12%=18%
Thepresentvalueoftheportfolioisnow:
$135,000/=$114,407
d.Foragivenexpectedcashflow,portfoliosthatcommandgreaterriskpremiumsmustsellatlowerprices.Theextradiscountfromexpectedvalueisapenaltyforrisk.
5.WhenwespecifyutilitybyU=E(r)–σ2,theutilitylevelforT-billsis:
Theutilitylevelfortheriskyportfoliois:
U=–×A×2=–×A
Inorderfortheriskyportfoliotobepreferredtobills,thefollowingmusthold:
–>A<=
Amustbelessthanfortheriskyportfoliotobepreferredtobills.
6.PointsonthecurvearederivedbysolvingforE(r)inthefollowingequation:
U==E(r)–σ2=E(r)–σ2
ThevaluesofE(r),giventhevaluesofσ2,aretherefore:
2
E(r)
Theboldlineinthegraphonthenextpage(labeledQ6,forQuestion6)depictstheindifferencecurve.
7.RepeatingtheanalysisinProblem6,utilityisnow:
U=E(r)–σ2=E(r)–σ2=
Theequal-utilitycombinationsofexpectedreturnandstandarddeviationarepresentedinthetablebelow.Theindifferencecurveistheupwardslopinglineinthegraphonthenextpage,labeledQ7(forQuestion7).
2
E(r)
TheindifferencecurveinProblem7differsfromthatinProblem6inslope.WhenAincreasesfrom3to4,theincreasedriskaversionresultsinagreaterslopefortheindifferencecurvesincemoreexpectedreturnisneededinordertocompensateforadditionalσ.
8.Thecoefficientofriskaversionforariskneutralinvestoriszero.Therefore,thecorrespondingutilityisequaltotheportfolio’sexpectedreturn.Thecorrespondingindifferencecurveintheexpectedreturn-standarddeviationplaneisahorizontalline,labeledQ8inthegraphabove(seeProblem6).
9.Arisklover,ratherthanpenalizingportfolioutilitytoaccountforrisk,derivesgreaterutilityasvarianceincreases.Thisamountstoanegativecoefficientofriskaversion.Thecorrespondingindifferencecurveisdownwardslopinginthegraphabove(seeProblem6),andislabeledQ9.
10.Theportfolioexpectedreturnandvariancearecomputedasfollows:
(1)
WBills
(2)
rBills
(3)
WIndex
(4)
rIndex
rPortfolio
(1)×
(2)+(3)×(4)
Portfolio
(3)×20%
2Portfolio
5%
%
%=
20%=
5
%=
16%=
5
%=
12%=
5
%=
8%=
5
%=
4%=
5
%=
0%=
11.ComputingutilityfromU=E(r)–×Aσ2=E(r)–σ2,wearriveatthevaluesinthecolumnlabeledU(A=2)inthefollowingtable:
WBills
WIndex
rPortfolio
Portfolio
2Portfolio
U(A=2)
U(A=3)
.0700
.0756
.0764
.0724
.0636
.0500
ThecolumnlabeledU(A=2)impliesthatinvestorswithA=2preferaportfoliothatisinvested100%inthemarketindextoanyoftheotherportfoliosinthetable.
12.ThecolumnlabeledU(A=3)inthetableaboveiscomputedfrom:
U=E(r)–σ2=E(r)–σ2
Themoreriskaverseinvestorsprefertheportfoliothatisinvested40%inthemarket,ratherthanthe100%marketweightpreferredbyinvestorswithA=2.
13.Expectedreturn=×18%)+×8%)=15%
Standarddeviation=×28%=%
14.
Investmentproportions:
%inT-bills
×25%=
%inStockA
×32%=
%inStockB
×43%=
%inStockC
15.Yourreward-to-volatilityratio:
Client'sreward-to-volatilityratio:
16.
17.a.E(rC)=rf+y×[E(rP)–rf]=8+y×(188)
Iftheexpectedreturnfortheportfoliois16%,then:
16%=8%+10%×y
Therefore,inordertohaveaportfoliowithexpectedrateofreturnequalto16%,theclientmustinvest80%oftotalfundsintheriskyportfolioand20%inT-bills.
b.
Client’sinvestmentproportions:
%inT-bills
×25%=
%inStockA
×32%=
%inStockB
×43%=
%inStockC
c.σC=×σP=×28%=%
18.a.σC=y×28%
Ifyourclientprefersastandarddeviationofatmost18%,then:
y=18/28==%investedintheriskyportfolio.
b.
19.a.y*
Therefore,theclient’soptimalproportionsare:
%investedintheriskyportfolioand%investedinT-bills.
b.E(rC)=+×y*=+×=or%
C=×28=%
20.a.Iftheperiod1926–2012isassumedtoberepresentativeoffutureexpectedperformance,thenweusethefollowingdatatocomputethefractionallocatedtoequity:
A=4,E(rM)−rf=%,σM=%(weusethestandarddeviationoftheriskpremiumfromTable.Theny*isgivenby:
Thatis,%oftheportfolioshouldbeallocatedtoequityand%shouldbeallocatedtoT-bills.
b.Iftheperiod1968–1988isassumedtoberepresentativeoffutureexpectedperformance,thenweusethefollowingdatatocomputethefractionallocatedtoequity:
A=4,E(rM)−rf=%,σM=%andy*isgivenby:
Therefore,%ofthecompleteportfolioshouldbeallocatedtoequityand%shouldbeallocatedtoT-bills.
c.Inpart(b),themarketriskpremiumisexpectedtobelowerthaninpart(a)andmarketriskishigher.Therefore,thereward-to-volatilityratioisexpectedtobelowerinpart(b),whichexplainsthegreaterproportioninvestedinT-bills.
21.a.E(rC)=8%=5%+y×(11%–5%)
b.σC=y×σP=×15%=%
c.Thefirstclientismoreriskaverse,preferringinvestmentsthathavelessriskasevidencedbythelowerstandarddeviation.
22.Johnsonrequeststheportfoliostandarddeviationtoequalonehalfthemarketportfoliostandarddeviation.Themarketportfolio
whichimplies
.TheinterceptoftheCMLequals
andtheslopeoftheCMLequalstheSharperatioforthemarketportfolio(35%).ThereforeusingtheCML:
23.Data:
rf=5%,E(rM)=13%,σM=25%,and
=9%
TheCMLandindifferencecurvesareasfollows:
24.Forytobelessthan(thattheinvestorisalender),riskaversion(A)mustbelargeenoughsuchthat:
Forytobegreaterthan1(theinvestorisaborrower),Amustbesmallenough:
Forvaluesofriskaversionwithinthisrange,theclientwillneitherborrownorlendbutwillholdaportfoliocomposedonlyoftheoptimalriskyportfolio:
y=1for≤A≤
25.a.ThegraphforProblem23hastoberedrawnhere,with:
E(rP)=11%andσP=15%
b.Foralendingposition:
Foraborrowingposition:
Therefore,y=1for≤A≤
26.Themaximumfeasiblefee,denotedf,dependsonthereward-to-variabilityratio.
Fory<1,thelendingrate,5%,isviewedastherelevantrisk-freerate,andwesolveforfasfollows:
Fory>1,theborrowingrate,9%,istherelevantrisk-freerate.Thenwenoticethat,evenwithoutafee,theactivefundisinferiortothepassivefundbecause:
.11–.09–f
=<
.13–.09
=→f=–.004
.15
.25
Morerisktolerantinvestors(whoaremoreinclinedtoborrow)willnotbeclientsofthefund.Wefindthatfisnegative:
thatis,youwouldneedtopayinvestorstochooseyouractivefund.Theseinvestorsdesirehigherrisk–higherreturncompleteportfoliosandthusareintheborrowingrangeoftherelevantCAL.Inthisrange,thereward-to-variabilityratiooftheindex(thepassivefund)isbetterthanthatofthemanagedfund.
27.a.SlopeoftheCML
Thediagramfollows.
b.Myfundallowsaninvestortoachieveahighermeanforanygivenstandarddeviationthanwouldapassivestrategy,.,ahigherexpectedreturnforanygivenlevelofrisk.
28.a.With70%ofhismoneyinvestedinmyfund’sportfolio,theclient’sexpectedreturnis15%peryearwithastandarddeviationof%peryear.Ifheshiftsthatmoneytothepassiveportfolio(whichhasanexpectedreturnof13%andstandarddeviationof25%),hisoverallexpectedreturnbecomes:
E(rC)=rf+×[E(rM)−rf]=.08+[×(.13–.08)]=.115,or%
Thestandarddevia
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 投资 10 习题 答案 06