金山区学年上学期七年级期中数学模拟题.docx
- 文档编号:30459454
- 上传时间:2023-08-15
- 格式:DOCX
- 页数:21
- 大小:93.49KB
金山区学年上学期七年级期中数学模拟题.docx
《金山区学年上学期七年级期中数学模拟题.docx》由会员分享,可在线阅读,更多相关《金山区学年上学期七年级期中数学模拟题.docx(21页珍藏版)》请在冰豆网上搜索。
金山区学年上学期七年级期中数学模拟题
金山区2018-2019学年上学期七年级期中数学模拟题
班级__________座号_____姓名__________分数__________
一、选择题
1.某机械厂现加工一批零件,直径尺寸要求是40±0.03(单位mm),则直径是下列各数值的产品中合格的是( )
A.
39.90
B.
39.94
C.
40.01
D.
40.04
2.如果把某一天的中午12点记为0点,那么这一天的上午9点应记为( )
A.
9点
B.
-9点
C.
3点
D.
-3点
3.下列算式中,运算结果为负数的是( )
A.
|-(-3)|
B.
-52
C.
-(-5)
D.
(-3)2
4.(2013秋•临颍县期末)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()
A.(a+2b)(a﹣b)=a2+ab﹣2b2B.a2﹣b2=(a+b)(a﹣b)
C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b2
5.下列代数式中符合书写要求的是()
A.1
aB.﹣
aC.a÷bD.a2
6.巴黎与北京的时间差为-7时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:
00,那么巴黎时间是( )
A.
7月2日21时
B.
7月2日7时
C.
7月1日7时
D.
7月2日5时
7.(2013秋•微山县期末)下列方程中,不是一元二次方程的是()
A.
B.
C.
D.x2+x﹣3=x2
8.若x=1是方程ax+3x=2的解,则a的值是()
A.﹣1B.5C.1D.﹣5
9.在-(-3)2、-|-3|、(-3 )3、(-3)2 四个数中,负数有( )
A.
1个
B.
2个
C.
3个
D.
4个
10.规定用符号[n]表示一个实数的小数部分,例如:
[3.5]=0.5,[
]=
﹣1.按照此规定,[
+1]的值为
()
A.
﹣1B.
﹣3C.
﹣4D.
+1
11.某店一周经营情况记录(记盈利为正)+113,+87,-55,-35,+80,+90,则该店一周经营情况( )
A.
盈利280元
B.
亏损280元
C.
盈利260元
D.
亏损260
12.如图所示的线段或射线,能相交的是()
A.
B.
C.
D.
13.下列方程中,属于一元一次方程的是()
A.x﹣3B.x2﹣1=0C.2x﹣3=0D.x﹣y=3
14.(2010•温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有()
A.1个B.2个C.3个D.4个
15.(2015春•苏州期末)(3a+2)(4a2﹣a﹣1)的结果中二次项系数是()
A.﹣3B.8C.5D.﹣5
二、填空题
16.如图,在射线AB上取三点B、C、D,则图中共有射线 条.
17.(2016春•江宁区期中)在矩形ABCD中,对角线AC、BD交于点O,若∠AOB=100°,则∠OAB= .
18.(2013秋•揭西县校级月考)用配方法解方程x2﹣2x+1=0,原方程可化为 .
19.(2013秋•八道江区校级期中)如果一个三角形两边上的高的交点,恰好是三角形的一个顶点,则此三角形是 三角形.
三、解答题
20.(2012秋•东港市校级期末)如图:
一次函数的图象与反比例函数
的图象交于A(﹣2,6)和点B(4,n)
(1)求反比例函数的解析式和B点坐标;
(2)根据图象回答,在什么范围时,一次函数的值大于反比例函数的值.
21.(2015春•萧山区月考)已知两实数a与b,M=a2+b2,N=2ab
(1)请判断M与N的大小,并说明理由.
(2)请根据
(1)的结论,求
的最小值(其中x,y均为正数)
(3)请判断a2+b2+c2﹣ab﹣ac﹣bc的正负性(a,b,c为互不相等的实数)
22.(2015秋•东阿县期中)甲、乙两人分别从相距72千米的A,B两地同时出发,相向而行.甲从A地出发,走了2千米时,发现有物品遗忘在A地,便立即返回,取了物品后立即从A地向B地行进,结果甲、乙两人恰好在AB的中点处相遇.若甲每时比乙多走1千米,求甲、乙两人的速度.
23.(2013秋•揭西县校级月考)如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC.
求证:
∠BAD+∠C=180°.
24.(2009春•洛江区期末)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范为 ;药物燃烧后,y关于x的函数关系式为 .
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过 分钟后,员工才能回到办公室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?
为什么?
25.(2013秋•揭西县校级月考)如图,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.
(1)试判断是路灯还是太阳光产生的影子,如果是路灯产生的影子确定路灯的位置(用点P表示).如果是太阳光请画出光线.
(2)在图中画出表示大树高的线段.
26.(2010秋•婺城区期末)寒假在即,某校初一
(2)班学生组织大扫除:
去图书馆的有26人,去实验室的有19人,另在教室有15人.现在要求去图书馆人数恰为去实验室人数的2倍.
(1)若在教室的学生全部调往图书馆与实验室,求调去图书馆的学生有几人?
(2)若先从教室抽走4人去打扫老师的办公室,再将剩下的学生全部调往图书馆与实验室,这时调配能否满足题中条件?
若能,求出调往图书馆的学生人数;若不能,请说明理由.
27.一个底面半径为4cm,高为10cm的圆柱形烧杯中装满水.把烧杯中的水倒入底面半径为1cm的圆柱形试管中,刚好倒满试管.试管的高为多少cm?
金山区2018-2019学年上学期七年级期中数学模拟题(参考答案)
一、选择题
1.【答案】C
【解析】【解析】:
解:
40-0.03=39.97mm,
40+0.03=40.03mm,
所以这批零件的直径范围是39.97mm到40.03mm.
故选:
C.
【考点】:
正数、负数、有理数
【难度】:
中等难度
2.【答案】D
【解析】【解析】:
解:
中午12点记为0点,那么这一天的上午9点应记为-3点.
故选D.
【考点】:
正数、负数、有理数
【难度】:
中等难度
3.【答案】B
【解析】【解析】:
解:
∵|-(-3)|=3,-52=-25,-(-5)=5,(-3)2=9
∴-52是负数,
故选B.
【考点】:
正数、负数、有理数
【难度】:
较容易
4.【答案】B
【解析】解:
∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),
而两个图形中阴影部分的面积相等,
∴a2﹣b2=(a+b)(a﹣b).
故选B.
5.【答案】B
【解析】解:
A、带分数要写成假分数,故选项错误;
B、符合书写要求;
C、应写成分数的形式,故选项错误;
D、2应写在字母的前面,故选项错误.
故选:
B.
点评:
本题主要考查代数式的书写要求:
(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;
(2)数字与字母相乘时,数字要写在字母的前面;
(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.
6.【答案】B
【解析】【解析】:
解:
比7月2日14:
00晚七小时就是7月2日7时.
故选B.
【考点】:
正数、负数、有理数
【难度】:
容易
7.【答案】D
【解析】解:
A、符合ax2+bx+c=0(且a≠0),是一元二次方程,故本选项错误;
B、化简后为
,符合ax2+bx+c=0(且a≠0),是一元二次方程,故本选项错误;
C、符合ax2+bx+c=0(且a≠0),是一元二次方程,故本选项错误;
D、x2+x﹣3=x2化简后为x﹣3=0,是一元一次方程,故本选项正确.
故选D.
8.【答案】A
【解析】解:
把x=1代入原方程得:
a+3=2
解得:
a=﹣1
故选A
点评:
已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母的方程进行求解.
9.【答案】C
【解析】【解析】:
解:
-(-3)2=-9、-|-3|=-3、(-3 )3=-27、(-3)2=9,
所以负数共有3个,
故选:
C.
【考点】:
正数、负数、有理数
【难度】:
中等难度
10.【答案】B
【解析】解:
由3<
<4,得
4<
+1<5.
[
+1]=
+1﹣4=
﹣3,
故选:
B
点评:
本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.
11.【答案】A
【解析】【解析】:
解:
因为113+87-55-35+80+90=280,
所以可知一周盈利280元,
故选:
A.
【考点】:
正数、负数、有理数
【难度】:
容易
12.【答案】D
【解析】解:
A、是两条线段,不能延伸,不能相交,故选项错误;
B、射线向一方延伸,不能相交,故选项错误;
C、射线向一方延伸,不能相交,故选项错误;
D、射线向一方延伸,能相交,故选项正确.
故选:
D.
点评:
本题考查了直线、射线、线段的性质、理解三线的延伸性是关键.
13.【答案】C
【解析】解:
A、不是等式,故不是方程;
B、未知数的最高次数为2次,是一元二次方程;
C、符合一元一次方程的定义;
D、含有两个未知数,并且未知数的最高次数是一次,是二元一次方程;
故选C.
点评:
判断一元一次方程的定义要分为两步:
(1)判断是否是整式方程;
(2)对整式方程化简,化简后判断是否只含有一个未知数(元),并且未知数的指数是1(次).
14.【答案】D
【解析】解:
①在△ABC和△ADC中
,
∴△ABC≌△ADC(SAS);
②∵在△ABC和△DBC中
,
∴△ABC≌△DBC(SAS);
③∵在△ABC和△ABD中
,
∴△ABC≌△ABD(SAS);
④∵DE∥AC,
∴∠ACB=∠DEC,
∵在△ABC和△DCE中
∴△ABC≌△DCE(AAS).
故选D.
15.【答案】C
【解析】解:
(3a+2)(4a2﹣a﹣1)
=12a3﹣3a2﹣3a+8a2﹣2a﹣2
=12a3+5a2﹣5a﹣2,
所以二次项系数是5,
故选C.
二、填空题
16.【答案】4.
【解析】解:
分别以A、B、C、D为端点共有不同的射线4条.
故答案为:
4.
点评:
本题考查了直线、射线、线段,熟记射线的定义是解题的关键,从端点考虑求解更容易理解.
17.【答案】 40° .
【解析】解:
∵四边形ABCD是矩形,
∴AC=2OA,BD=2BO,AC=BD,
∴OB=0A,
∵∠AOB=100°,
∴∠OAB=∠OBA=
(180°﹣100°)=40°
故答案为:
40°.
18.【答案】 (x﹣1)2=0 .
【解析】解:
方程配方得:
x2﹣2x+1=0,即(x﹣1)2=0,
故答案为:
(x﹣1)2=0
19.【答案】 直角 三角形.
【解析】解:
∵三角形两边上的高的交点,恰好是三角形的一个顶点,
∴此三角形是直角三角形.
故答案为:
直角.
三、解答题
20.【答案】
【解析】解:
(1)把A(﹣2,6)代入y=
得:
k=﹣12,
即反比例函数的解析式是:
y=﹣
,
把B(4,n)代入反比例函数的解析式得:
n=﹣
=﹣3,
即B的坐标是(4,﹣3);
(2)∵一次函数和反比例函数的交点坐标是(4,﹣3)和(﹣2,6),
∴一次函数的值大于反比例函数的值时,x的范围是x<﹣2或0<x<4.
21.【答案】
【解析】解:
(1)M≥N;理由如下:
∵M﹣N=a2+b2﹣2ab=(a﹣b)2≥0,∴M≥N;
(2)∵
∴最小值为5;
(3)a2+b2+c2﹣ab﹣ac﹣bc>0,理由如下:
∵a2+b2+c2﹣ab﹣ac﹣bc
=
(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)
=
[(a﹣b)2+(a﹣c)2+(b﹣c)2],
∵a,b,c为互不相等的实数,
∴a2+b2+c2﹣ab﹣ac﹣bc>0.
22.【答案】
【解析】解:
设乙的速度为每小时x千米,则甲的速度为每小时(x+1)千米,
甲的路程为72÷2+2×2=40(km),
则
解得:
x=9,
检验:
x=9符合题意,是原方程的解,
则甲的速度为每小时10千米.
答:
甲的速度为10千米每小时,乙的速度为9千米每小时.
23.【答案】
【解析】证明:
在BC上截取BE=BA,连接DE,
∵BD平分∠ABC,
∴∠ABD=∠EBD,
在△ABD和△EBD中
∴△ABD≌△EBD,
∴∠A=∠BED,AD=DE,
∵AD=DC,
∴DE=DC,
∴∠C=∠DEC,
∵∠BED+∠DEC=∠A+∠DEC=∠A+C=180°,
即∠BAD+∠C=180°.
24.【答案】
【解析】解:
(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1
∴k1=
设药物燃烧后y关于x的函数关系式为y=
k2>0)代入(8,6)为6=
∴k2=48
∴药物燃烧时y关于x的函数关系式为y=
x(0≤x≤8)药物燃烧后y关于x的函数关系式为y=
(x>8)
(2)结合实际,令y=
中y≤1.6得x≥30
即从消毒开始,至少需要30分钟后学生才能进入教室.
(3)把y=3代入y=
x,得:
x=4
把y=3代入y=
,得:
x=16
∵16﹣4=12
所以这次消毒是有效的.
25.【答案】
【解析】解:
(1)如图所示:
P点即为路灯的位置;
(2)如图所示:
GM即为所求.
26.【答案】
【解析】解:
(1)设调往图书馆的有x人,则去图书室的就有(15﹣x)人,由题意,得
26+x=2[19+(15﹣x)],
解得:
x=14.
故调去图书馆的学生有14人
(2)设调往图书馆的有y人,则去实验室的就有(15﹣4﹣y)人,由题意,得
26+y=2[19+(15﹣4﹣y)],
解得:
y=
(不符合题意,舍去)
故不能满足题目中的条件.
点评:
本题考查了列一元一次方程解实际问题的运用及一元一次方程的解法,判断条件改变调配方案不变的情况下是否成立在实际生活中运用.
27.【答案】
【解析】解:
设试管的高为xcm,则
π×42×10=π×12×x
解得:
x=160
答:
试管的高为160cm.
点评:
此题的关键是要利用体积公式列出等量关系,即V烧杯=V试管.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 金山区 学年 上学 年级 期中 数学模拟