解析几何大题的解题技巧.docx
- 文档编号:30314565
- 上传时间:2023-08-13
- 格式:DOCX
- 页数:15
- 大小:2.79MB
解析几何大题的解题技巧.docx
《解析几何大题的解题技巧.docx》由会员分享,可在线阅读,更多相关《解析几何大题的解题技巧.docx(15页珍藏版)》请在冰豆网上搜索。
解析几何大题的解题技巧
解析几何大题的解题技巧
解析几何大题的解题技巧(只包括椭圆和抛物线)
——————————————————一条分割线———————————————
一、设点或直线
做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。
直线与曲线的两个交点一般可以设为
等。
对于椭圆
上的唯一的动点,还可以设为
。
在抛物线
上的点,也可以设为
。
◎还要注意的是,很多点的坐标都是设而不求的。
对于一条直线,如果过定点
并且不与y轴平行,可以设点斜式
如果不与x轴平
有,解要用的话需要把下面的推导过程抄一下,理解一下。
)。
如果考试允许使用课外知识的话,直接写
就可以了。
(3)分式取值判断
解析几何题目的运算中可能需要求分式的取值范围,所以我这里也总结一下常见的六种类型分式取值范围的求法。
,其中f(x)的次数为m,g(x)的次数为n。
(4)点差法的使用
在椭圆的题目中还有一种方法叫点差法,虽然适用范围不大,但是能用点差法做的题目用点差发真的会比常规方法简单不少。
这类题目一般都会涉及到弦的中点,做题时一定不要忘了点差法的存在。
设椭圆上两个点的坐标,将两点在椭圆上的方程相减,整理即可得到这两点的中点的横纵坐标与这两点连线的斜率的关系式,或者说得到两点联线斜率与中点与原点连线的斜率积。
因为点差法得到的是斜率关系,所以将点差法与转化斜率关系一起使用效果更佳。
(当然前提是这道题得能用斜率转化),我单找了一些点差法的例题,希望能对点差法有更深的理解
例一
例二
例三
抛物线也有点差法,用抛物线的点差法可以得到抛物线上两点的连线斜率与这两点中点纵坐标的乘积是焦准距,但是用的不多。
三、能力要求
做解析几何的题目,首先对人的耐心与信心是一种考验。
在做题过程中可能遇到会一大长串的式子要化简,这时候,只要你方向没错,坚持算下去肯定能看到最终的结果。
另外运算速度和准确率也是很重要的,在真正考试的时候肯定不像平时做题的时候能容你慢慢做题,因此需要有一定的做题速度,在做题的时候运算准确也是必须要保证的,因为一旦算错数,就很可能功亏一篑。
使自己的这些能力得到培养必然少不了平时的训练。
四、补充知识
这一部分主要说一些对做题有帮助的公式、定理、推论等内容
关于直线:
1、将直线的两点式整理后,可以得到这个方程:
。
如果需要写过
两点的直线方程,直接代入这个式子就可以得到,没必要由直线的两点式或点斜式重新化简。
至于这两点连线是否与x轴垂直,是否与y轴垂直都没有关系。
2、直线一般式Ax+By+C=0所表示的直线和向量
垂直;过定点
的直线的一般式可以由
化简得到。
一句这两条推论可以直接写出两点的垂直平分线的方程。
3、可能有的老师没仔细讲直线的参数方程,所以在这里补充一点直线的参数方程的东西,希望对解题有帮助
PS:
用直线的参数方程设抛物线的焦点弦并与抛物线联立,可以解出两焦点坐标,而且没有根号!
关于椭圆:
4、椭圆
,的焦点弦弦长为
(其中α是直线的倾斜角,k是l的斜率)。
5、根据椭圆的第二定义,椭圆上的点到焦点的距离与到同一侧的准线的距离之商等于椭圆的离心率。
椭圆
的准线是
,下面是推导过程
五、例题
上面给出的几个内容大都是教材中没有的,但这不代表这些东西在考场上不能用。
比如前两条内容,用的时候稍稍变换一下,老师也不一定知道你是在套结论。
如果想用第4条的话,可以装模作样地算算,实际上再套用结论,估计老师也未必能看出来。
至于第5个内容,如果老师没讲过,解体又用得着,那就把下面的推导过程抄下来再用。
用这些结论,都能或多或少地减小运算量,降低算错的几率。
下面看几道例题。
建议看解题过程之前最好先自己做一做。
就算不做也可以要看啊,里面涉及到有好多方法的!
例1
例2
例3
例4
例5
例6
例7
例8
例9
例10
例11
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解析几何 解题 技巧