小学奥数举一反三五年级.docx
- 文档编号:30281302
- 上传时间:2023-08-13
- 格式:DOCX
- 页数:20
- 大小:134.36KB
小学奥数举一反三五年级.docx
《小学奥数举一反三五年级.docx》由会员分享,可在线阅读,更多相关《小学奥数举一反三五年级.docx(20页珍藏版)》请在冰豆网上搜索。
小学奥数举一反三五年级
第6周尾数和余数
专题简析:
自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。
尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
例题1写出除213后余3的全部两位数。
分析因为213=210+3,把210分解质因数:
210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21,5×7=35,2×3×5=30,2×3×7=42,一共有7个两位数。
练习一
1,写出除109后余4的全部两位数。
2,178除以一个两位数后余数是3,适合条件的两位数有哪些?
3,写出除1290后余3的全部三位数。
例题2
(1)125×125×125×……×125[100个25]积的尾数是几?
(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?
分析
(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;
(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。
因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。
练习二
1,21×21×21×……×21[50个21]积的尾数是几?
2,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?
3,(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?
例题3
(1)4×4×4×…×4[50个4]积的个位数是几?
(2)9×9×9×…×9[51个9]积的个位数是几?
分析
(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。
50÷2=25没有余数,说明50个4相乘,积的个位是6。
(2)用上面的方法可以发现,51个9相乘时,积的个位是以“9,1”两个数字不断重复,51÷2=25……1,余数是1,说明51个9本乘积的个位是9。
练习三
1,24×24×24×…×24[2001个24],积的尾数是多少?
2,1×2×3×…×98×99,积的尾数是多少?
3,94×94×94×…×94[102个94]-49×49×…×49[101个49],差的个位是多少?
例题4把1/7化成小数,那么小数点后面第100位上的数字是多少?
分析因为1/7≈0.142857142857……,化成的小数是一个无限循环小数,循环节“142857”共有6个数字。
由于100÷6=16……4,所以,小数点后面的第100位是第17个循环节的第4个数字,是8。
练习四
1,把1/11化成小数,求小数点后面第2001位上的数字。
2,5/7写成循环小数后,小数点后第50个数字是几?
3,有一串数:
5、8、13、21、34、55、89……,其中,从第三个数起,每个数恰好是前两个数的和。
在这串数中,第1000个数被3除后所得的余数是多少?
例题5555…55[2001个5]÷13,当商是整数时,余数是几?
分析如果用除法硬除显然太麻烦,我们可以先用竖式来除一除,看一看余数在按怎样的规律变化。
从竖式中可以看出,余数是按3、9、4、6、0、5这六个数字不断重复出现。
2001÷6=333……3,所以,当商是整数时,余数是4。
练习五
1,444…4÷6[100个4],当商是整数时,余数是几?
2,当商是整数时,余数各是几?
(1)666…6÷4[100个6]
(2)444…4÷74[200个4]
(3)888…8÷7[200个8]
(4)111…1÷7[50个1]
第7周 一般应用题
(一)
专题简析:
一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样。
因此,一般应用题没有明显的结构特征和解题规律可循。
解答一般应用题时,可以借助线段图、示意图、直观演示手段帮助分析。
在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求问题(综合法);也可以从问题出发,找出必须的两个条件(分析法)。
在实际解时,可以根据题中的已知条件,灵活运用这两种方法。
例1五年级有六个班,每班人数相等。
从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数。
原来每班多少人?
分析与解答:
从每班选16人参加少先队活动,6个班共选16×6=96(人)。
剩下的同学相当于原来4个班的人数,那么,96人就相当于原来(6-4)个班人人数,所以,原来每班96÷2=48(人)。
练习一
1,五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。
原来每人存款多少?
2,把一堆货物平均分给6个小组运,当每个小组都运了68箱时,正好运走了这堆货物的一半。
这堆货物一共有多少箱?
3,老师把一批树苗平均分给四个小队栽,当每队栽了6棵时,发现剩下的树苗正好是原来每队分得的棵数。
这批树苗一共有多少棵?
例2某车间按计划每天应加工50个零件,实际每天加工56个零件。
这样,不仅提前3天完成原计划加工零件的任务,而且还多加工了120个零件。
这个车间实际加工了多少个零件?
分析如果按原计划的天数加工,加工的零件就会比原计划多56×3+120=288(个)。
为什么会多加工288个呢?
是因为每天多加工了56-50=6(个)。
因此,原计划加工的天数是288÷6=48(天),实际加工了50×48+120=1520(个)零件。
练习二
1,汽车从甲地开往乙地,原计划每小时行40千米,实际每小时多行了10千米,这样比原计划提前2小时到达了乙地。
甲、乙两地相距多少千米?
2,小明骑车上学,原计划每分钟行200米,正好准时到达学校,有一天因下雨,他每分钟只能行120米,结果迟到了5分钟。
他家离学校有多远?
3,加工一批零件,原计划每天加工80个,正好按期完成任务。
由于改进了生产技术,实际每天加工100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。
他们实际加工零件多少个?
例3甲、乙二人加工零件。
甲比乙每天多加工6个零件,乙中途停了15天没有加工。
40天后,乙所加工的零件个数正好是甲的一半。
这时两人各加工了多少个零件?
分析甲工作了40天,而乙停止了15天没有加工,乙只加工了25天,所以他加工的零件正好是甲的一半,也就是甲20天加工的零件和乙25天加工的零件同样多。
由于甲每天比乙多加工6个,20天一共多加工6×20=120(个)。
这120个零件相当于乙25-20=5(天)加工的个数,乙每天加工120÷(25-20)=24(个)。
乙一共加工了24×25=600(个),甲一共加工了600×2=1200(个)
练习三
1,甲、乙二人加工一批帽子,甲每天比乙多加工10个。
途中乙因事休息了5天,20天后,甲加工的帽子正好是乙加工的2倍,这时两人各加工帽子多少个?
2,甲、乙两车同时从A、B两地相对开出,甲车每小时比乙车多行20千米。
途中乙因修车用了2小时,6小时后甲车到达两地中点,而乙车才行了甲车所行路程的一半。
A、B两地相距多少千米?
3,甲、乙两人承包一项工程,共得工资1120元。
已知甲工作了10天,乙工作了12天,且甲5天的工资和乙4天的工资同样多。
求甲、乙每天各分得工资多少元?
例4服装厂要加工一批上衣,原计划20天完成任务。
实际每天比计划多加工60件,照这样做了15天,就超过原计划件数350件。
原计划加工上衣多少件?
分析由于每天比计划多加工60件,15天就比原计划的15天多加工60×15=900(件),这时已超过计划件数350件,900件中去掉这350件,剩下的件数就是原计划(20-15)天中的工作量。
所以,原计划每天加工上衣(900-350)÷(20-15)=110(件),原计划加工110×20=2200(件)。
练习四
1,用汽车运一堆煤,原计划8小时运完。
实际每小时比原计划多运1.5吨,这样运了6小时就比原计划多运了3吨。
原计划8小时运多少吨煤?
2,汽车从甲地开往乙地,原计划10小时到达。
实际每小时比原计划多行15千米,行了8小时后,发现已超过乙20千米。
甲、乙两地相距多少千米?
3,小明看一本书,原计划8天看完。
实际每天比原计划少看了4页。
这样,用10天才看完了这本书。
这本书一共有多少页?
例5王师傅原计划每天做60个零件,实际每天比原计划多做20个,结果提前5在完成任务。
王师傅一共做了多少个零件?
分析按实际做法再做5天,就会超产(60+20)×5=400(个)。
为什么会超产400个呢?
是因为每天多生产了20个,400里面有几个20,就是原计划生产几天。
400÷20=20(天),因此,王师傅一共做了60×20=1200(个)零件。
练习五
1,食堂准备了一批煤,原计划每天烧0.8吨,实际每天比原计划节约了0.1吨,这样比原计划多烧了2天。
这批煤一共有多少吨?
2,造纸厂生产一批纸,计划每天生产13.5吨,实际每天比原计划多生产1.5吨,结果提前2.5天完成了任务。
实际用了多少天?
3,机床厂生产一批机床,原计划每天生产15台,实际每天生产18台,这样比原计划提前3天完成了任务。
这批机床一共有多少台?
第8周一般应用题
(二)
专题简析:
较复杂的一般应用题,往往具有两组或两组以上的数量关系交织在一起,但是,再复杂的应用题都可以通过“转化”向基本的问题靠拢。
因此,我们在解答一般应用题时要善于分析,把复杂的问题简单化,从而正确解答。
例1工程队要铺设一段地下排水管道,用长管子铺需要25根,用短管子铺需要35根。
已知这两种管子的长相差2米,这段排水管道长多少米?
分析因为每根长管子比每根短管子长2米,25根长管子就比25根短管子长50米。
而这50米就相当于(35-25)根短管子的长度。
因此,每根短管子的长度就是50÷(35-25)=5(米),这段排水管道的长度应是5×35=175(米)。
练习一
1,生产一批零件,甲单独生产要用6小时,乙单独生产要用8小时。
如果甲每小时比乙多生产10个零件,这批零件一共有多少个?
2,一班的小朋友在操场上做游戏,每组6人。
玩了一会儿,他们觉得每组人数太少便重新分组,正好每组9人,这样比原来减少了2组。
参加游戏的小朋友一共有多少人?
3,甲、乙二人同时从A地到B地,甲经过10小时到达了B地,比乙多用了4小时。
已知二人的速度差是每小时5千米,求甲、乙二人每小时各行多少千米?
例2甲、乙、丙三人拿出同样多的钱买一批苹果,分配时甲、乙都比丙多拿24千克。
结帐时,甲和乙都要付给丙24元,每千克苹果多少元?
分析三人拿同样多的钱买苹果应该分得同样多的苹果。
24×2÷3=16(千克),也就是丙少拿16千克苹果,所以得到24×2=48元。
每千克苹果是48÷16=3(元)。
练习二
1,甲和乙拿出同样多的钱买相同的铅笔若干支,分铅笔时,甲拿了13支,乙拿了7支,因此,甲又给了乙6角钱。
每支铅笔多少钱?
2,春游时小明和小军拿出同样多的钱买了6个面包,中午发现小红没有带食品,结果三人平均分了这些面包,而小红分别给了小明和小军各2.2元钱。
每个面包多少元?
3,“六一”儿童节时同学们做纸花,小华买来了7张红纸,小英买来了和红纸同样价格的5张黄纸。
老师把这些纸平均分给了小华、小英和另外两名同学,结果另外两名同学共付给老师9元钱。
老师把9元钱怎样分给小华和小英?
例3甲城有177吨货物要跑一趟运到乙城。
大卡车的载重量是5吨,小卡车的载重量是2吨,大、小卡车跑一趟的耗油量分别是10升和5升。
用多少辆大卡车和小卡车来运输时耗油最少?
分析大汽车一次运5吨,耗油10升,平均运1吨货耗油10÷5=2(升);小汽车一次运2吨,耗油5升,平均运1吨货耗油5÷2=2.5(升)。
显然,为耗油量最少应该尽可能用大卡车。
177÷5=35(辆)……2吨,余下的2吨正好用小卡车运。
因此,用35辆大汽车和1辆小汽车运耗油量最少。
练习三
1,五名选手在一次数学竞赛中共得404分,每人得分互不相同,并且都是整数。
如果最高分是90分,那么得分最少的选手至少得多少分?
2,用1元钱买4分、8分、1角的邮票共15张,那么最多可以买1角的邮票多少张?
3,某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。
可以肯定至少有多少人四项都会?
例4有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸,其中北京日报34份,江海晚报30份,电视报22份。
那么订江海晚报和电视报的共有多少家?
分析这栋楼共订报纸34+30+22=86(份),因为每家都订2份不同的报纸,所以一共有86÷2=43家。
在这43家居民中,有34家订了北京日报,剩下的9家居民一定是订了江海晚报和电视报。
练习四
1,五
(1)班全体同学每人带2个不同的水果去慰问解放军叔叔,全班共带了三种水果,其中苹果40个,梨32个,桔子26个。
那么,带梨和桔子的有多少个同学?
2,在一次庆祝“六一”儿童节活动中,一个方队的同学每人手里都拿两种颜色的气球,共有红、黄、绿三种颜色。
其中红色有56只,黄色的有60只,绿色的有46只。
那么,手拿红、绿两种气球的有多少个同学?
3,学校开设了音乐、球类和美术三个兴趣小组,第一小队的同学们每人都参加了其中的两个小组,其中9人参加球类小组,6人参加美术小组,7人参加音乐小组的活动。
参加美术和音乐小组活动的有多少个同学?
例5一艘轮船发生漏水事故,立即安装两台抽水机向外抽水,此时已进水800桶。
一台抽水机每分钟抽水18桶,另一台每分钟抽水14桶,50分钟把水抽完。
每分钟进水多少桶?
分析50分钟内,两台抽水机一共能抽水(18+14)×50=1600(桶)。
1600桶水中,有800桶是开始抽之前就漏进的,另800桶是50分钟又漏进的,因此,每分钟漏进水800÷50=16(桶)。
练习五
1,一个水池能装8吨水,水池里装有一个进水管和一个出水管。
两管齐开,20分钟能把一池水放完。
已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?
2,某工地原有水泥120吨。
因工程需要,又派5辆卡车往工地送水泥,平均每辆卡车每天送25吨,3天后工地上共有水泥101吨。
这个工地平均每天用水泥多少吨?
3,一堆货物重96吨,甲队用16小时运完,乙队用24小时运完。
如果让两队同时合运,几小时运完?
第9周 一般应用题(三)
专题简析
解答一般应用题时,可以按下面的步骤进行:
1,弄清题意,找出已知条件和所求问题;
2,分析已知条件和所求问题之间的关系,找出解题的途径;
3,拟定解答计划,列出算式,算出得数;
4,检验解答方法是否合理,结果是否正确,最后写出答案。
例1甲、乙两工人生产同样的零件,原计划每天共生产700个。
由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。
甲、乙原计划每天各生产多少个零件?
分析二人实际每天比原计划多生产1020-700=320(个)。
这320个零件中,有100个是甲多生产的,那么320-100=220(个)就是乙日产量的1倍,即乙原来的日产量,甲原来每天生产700-220=480(个)。
练习一
1,工厂里有2个锅炉,原来每月烧煤5.6吨。
进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。
原来两个锅炉每月各烧煤多少吨?
2,甲、乙两人生产同样的零件,原计划每天共生产80个。
由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。
甲、乙原计划每天各生产多少个零件?
3,甲、乙两队合挖一条水渠,原计划两队每天共挖100米,实际甲队因有人请假,每天比计划少挖15米,而乙队由于增加了人,每天挖的是原计划的2倍,这样两队每天一共挖了150米。
求两队原计划每天各挖多少米?
例2把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。
求竹竿的长。
分析因为竹竿先插了一次,湿了40厘米,倒转过来再插一次又湿了40厘米,所以湿了的部分是40×2=80(厘米)。
这时,湿的部分比它的一半长13厘米,说明竹竿的长度是(80-13)×2=134(厘米)。
练习二
1,有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。
这根铁丝原来长多少厘米?
2,有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米。
这根竹竿原来长多少厘米?
3,两根电线一样长,第一根剪去80米,第二根剪去320米,剩下部分第一根是第二根长度的4倍。
两根电线原来各长多少米?
例3将一根电线截成15段。
一部分每段长8米,另一部分每段长5米。
长8米的总长度比长5米的总长度多3米。
这根铁丝全长多少米?
分析设这15段中有X段是8米长的,则有(15-X)段是5米长的。
然后根据“8米的总长度比5米的总长度多3米”列出方程,并进行解答。
练习三
1,某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。
上坡路比下坡路少220米。
这段小坡路全长多少米?
2,食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。
已知买回的大米比面粉多165千克,求买回大米、面粉各多少千克?
3,老师买回两种笔共16支奖给三好学生,其中铅笔每支0.4元,圆珠笔每支1.2元,买圆珠笔比买铅笔共多用了1.6元。
求买这些笔共用去多少钱?
例4甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件。
又同时加工4小时后,甲总共加工的零件反而比乙多4200个。
甲、乙每小时各加工零件多少个?
分析
(1)在后4小时内,甲一共比乙多加工了4200+400=4600(个)零件,甲每小时比乙多加工4600÷4=1150个零件。
(2)在前4小时内,甲实际只加工了4-2.5=1.5小时,甲1.5小时比乙1.5小时应多做1150×1.5=1725个零件,因此,1725+400=2125个零件就是乙2.5小时的工作量,即乙每小时加工2125÷2.5=850个,甲每小时加工850+1150=2000个。
练习四
1,甲、乙二人同时从A地去B地,前3小时,甲因修车1小时,因此乙邻先于甲4千米。
又经过3小时,甲反而领先了乙17千米。
求二人的速度。
2,师徒二人生产同一种零件,徒弟比师傅早2小时开工,当师傅生产了2小时后,发现自己比徒弟少做20个零件。
二人又生产了2小时,师傅反而比徒弟多生产了10个。
师傅每小时生产多少个零件?
3,甲每小时生产12个零件,乙每小时生产8个零件。
一次,二人同时生产同样多的零件,结果甲比乙提前5小时完成了任务。
问:
甲一共生产了多少个零件?
例5加工一批零件,单给甲加工需10小时,单给乙加工需8小时。
已知甲每小时比乙少做3个零件,这批零件一共有多少个?
分析因为甲每小时比乙少做3个零件,8小时就比乙少做3×8=24(个)零件,所以,24个零件就是甲(10-8)小时的工作量。
甲每小时加工24÷(10-8)=12(个),这批零件一共有12×10=120(个)。
练习五
1,快、慢两车同时从甲地开往乙地,行完全程快车只用了4小时,而慢车用了6.5小时。
已知快车每小时比慢车多行25千米。
甲、乙两地相距多少千米?
2,妈妈去买水果,她所带的钱正好能买18千克苹果或25千克的梨。
已知每千克梨比每千克苹果便宜0.7元,妈妈一共带了多少钱?
3,师徒二人加工零件,已知师傅6小时加工的零件和徒弟8小时加工的零件相等。
如果师傅每小时比徒弟多加工3个零件,那么,徒弟每小时加工多少个零件?
第10周数阵
专题简析:
填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。
这里,和同学们讨论一些数阵的填法。
解答数阵问题通常用两种方法:
一是待定数法,二是试验法。
待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。
试验法就是根据题中所给条件选准突破口,确定填数的可能范围。
把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。
例题1把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。
先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:
A+B+C+D+E=35,A+E+B+C+E+D=21×2=42。
把两式相比较可知,E=42-35=7,即中间填7。
然后再根据5+9=6+8便可把五个数填进方格,如图b。
练习一
1,把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。
2,把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。
3,将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。
例题2将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。
分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2,即55+a+b=60,a+b=5。
在1——10这十个数中1+4=5,2+3=5。
当a和b是1和4时,每个大圆上另外四个数分别是(2,6,8,9)和(3,5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1,5,9,10)和(4,6,7,8)。
练习二
1,把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。
2,把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。
3,将1——8八个数填入下图方格里,使上面四格、下面四格、左四格、右四格、中间四格以及对角线四格内四个数的和都是18。
例题3将1——6这六个数分别填入下图的圆中,使每条直线上三个圆内数的和相等、且最大。
分析设中间三个圆内的数是a、b、c。
因为计算三条线上的和时,a、b、c都被计算了两次,根据题意可知:
1+2+3+4+5+6+(a+b+c)除以3没有余数。
1+2+3+4+5+6=21,21÷3=7没有余数,那么a+b+c的和除以3也应该没有余数。
在1——6六个数中,只有4+5+6的和最大,且除以3没有余数,因此a、b、c分别为4、5、6。
(1+2+3+4+5+6+4+5+6)÷3=12,所以有下面的填法:
练习三
1,将1——6六个数分别填入下图的○内,使每边上的三个○内数的和相等。
2,将1——9九个数分别填入下图○内,使每边上四个○内数的和都是17。
3,将1——8八个数分别填入下图的○内,使每条安上三个数的和相等。
例题4将1——7分别填入下图的7个○内,使每条线段上三个○内数的和相等。
分析首先要确定中心圆内的数,设中心○内的数是a,那么,三条线段上的总和是1+2+3+4+5+6+7+2a=28+2a,由于三条线段上的和相等,所以(28+2a)除以3应该没有余数。
由于28÷3=9……1,那么2a除以3应该余2,因此,a可以为1、4或7。
当a=1时,(28+2×1)÷3-1=9,即每条线段上其他两数的和是9,因此,有这样的填法。
练习四
1,将1——9填入下图的○中,使横、竖行五个数相加的和都等于25。
2,将1——11这十一个数分别填进下图的○里,使
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 举一反三 年级