混凝土裂缝形成与控制.docx
- 文档编号:3012816
- 上传时间:2022-11-17
- 格式:DOCX
- 页数:15
- 大小:37.93KB
混凝土裂缝形成与控制.docx
《混凝土裂缝形成与控制.docx》由会员分享,可在线阅读,更多相关《混凝土裂缝形成与控制.docx(15页珍藏版)》请在冰豆网上搜索。
混凝土裂缝形成与控制
10-7混凝土裂缝的形成和控制
混凝土结构物的裂缝可分为微观裂缝和宏观裂缝。
微观裂缝是指那些肉眼看不见的裂缝,主要有三种,一是骨料与水泥石粘合面上的裂缝,称为粘着裂缝;二是水泥石中自身的裂缝,称为水泥石裂缝;三是骨料本身的裂缝,称为骨料裂缝。
微观裂缝在混凝土结构中的分布是不规则、不贯通的。
反之,肉眼看得见的裂缝称为宏观裂缝,这类裂缝的范围一般不小于0.05mm。
宏观裂缝是微观裂缝扩展而来的。
因此在混凝土结构中裂缝是绝对存在的,只是应将其控制在符合规范要求范围内,以不致发展到有害裂缝。
10-7-1混凝土裂缝产生的主要原因
混凝土结构的宏观裂缝产生的原因主要有三种,一是由外荷载引起的,这是发生最为普遍的一种情况,即按常规计算的主要应力引起的;二是结构次应力引起的裂缝,这是由于结构的实际工作状态与计算假设模型的差异引起的;三是变形应力引起的裂缝,这是由温度、收缩、膨胀、不均匀沉降等因素引起结构变形,当变形受到约束时便产生应力,当此应力超过混凝土抗拉强度时就产生裂缝。
当混凝土结构物产生变形时,在结构的内部、结构与结构之间,都会受到相互影响、相互制约,这种现象称为约束。
当混凝土结构截面较厚时,其内部温度和湿度分布不均匀,引起内部不同部位的变形相互约束,这样的约束称之为内约束;当一个结构物的变形受到其他结构的阻碍所受到的约束称为外约束。
外约束又可分为自由体、全约束和弹性约束。
建筑工程中的大体积混凝土结构所承受的变形,主要是因温差和收缩而产生的。
建筑工程中的大体积混凝土结构中,由于结构截面大,水泥用量多,水泥水化所释放的水化热会产生较大的温度变化和收缩作用,由此形成的温度收缩应力是导致钢筋混凝土产生裂缝的主要原因。
这种裂缝有表面裂缝和贯通裂缝两种。
表面裂缝是由于混凝土表面和内部的散热条件不同,温度外低内高,形成了温度梯度,使混凝土内部产生压应力,表面产生拉应力,表面的拉应力超过混凝土抗拉强度而引起的。
贯通裂缝是由于大体积混凝土在强度发展到一定程度,混凝土逐渐降温,这个降温差引起的变形加上混凝土失水引起的体积收缩变形,受到地基和其他结构边界条件的约束时引起的拉应力,超过混凝土抗拉强度时所可能产生的贯通整个截面的裂缝。
这两种裂缝不同程度上,都属有害裂缝。
高强度的混凝土早期收缩较大,这是由于高强混凝土中以30%~60%矿物细掺合料替代水泥,高效减水剂掺量为胶凝材料总量的1%~2%,水胶比为0.25~0.40,改善了混凝土的微观结构,给高强混凝土带来许多优良特性,但其负面效应最突出的是混凝土收缩裂缝几率增多。
高强混凝土的收缩,主要是干燥收缩、温度收缩、塑性收缩、化学收缩和自收缩。
混凝土初现裂纹的时间可以作为判断裂纹原因的参考:
塑性收缩裂纹大约在浇筑后几小时到十几小时出现;温度收缩裂纹大约在浇筑后2到10d出现;自收缩主要发生在混凝土凝结硬化后的几天到几十天;干燥收缩裂纹出现在接近1年龄期内。
干燥收缩:
当混凝土在不饱和空气中失去内部毛细孔和凝胶孔的吸附水时,就会产生干缩,高性能混凝土的孔隙率比普通混凝土低,故干缩率也低。
塑性收缩:
塑性收缩发生在混凝土硬化前的塑性阶段。
高强混凝土的水胶比低,自由水分少,矿物细掺合料对水有更高的敏感性,高强混凝土基本不泌水,表面失水更快,所以高强混凝土塑性收缩比普通混凝土更容易产生。
自收缩:
密闭的混凝土内部相对湿度随水泥水化的进展而降低,称为自干燥。
自干燥造成毛细孔中的水分不饱和而产生负压,因而引起混凝土的自收缩。
高强混凝土由于水胶比低,早期强度较快的发展,会使自由水消耗快,致使孔体系中相对湿度低于80%,而高强混凝土结构较密实,外界水很难渗入补充,导致混凝土产生自收缩。
高强混凝土的总收缩中,干缩和自收缩几乎相等,水胶比越低,自收缩所占比例越大。
与普通混凝土完全不同,普通混凝土以干缩为主,而高强混凝土以自收缩为主。
温度收缩:
对于强度要求较高的混凝土,水泥用量相对较多,水化热大,温升速率也较大,一般可达35~40℃,加上初始温度可使最高温度超过70~80℃。
一般混凝土的热膨胀系数为10×10-6/℃,当温度下降20~25℃时造成的冷缩量为2~2.5×10-4,而混凝土的极限拉伸值只有1~1.5×10-4,因而冷缩常引起混凝土开裂。
化学收缩:
水泥水化后,固相体积增加,但水泥-水体系的绝对体积则减小,形成许多毛细孔缝,高强混凝土水胶比小,外掺矿物细掺合料,水化程度受到制约,故高强混凝土的化学收缩量小于普通混凝土。
当混凝土发生收缩并受到外部或内部约束时,就会产生拉应力,并有可能引起开裂。
对于高强混凝土虽然有较高的抗拉强度,可是弹性模量也高,在相同收缩变形下,会引起较高的拉应力,而由于高强混凝土的徐变能力低,应力松弛量较小,所以抗裂性能差。
10-7-2大体积混凝土裂缝控制的计算
10-7-2-1大体积混凝土温度计算公式
1.最大绝热温升(二式取其一)
(1)Th=(mc+k·F)Q/c·ρ
(2)Th=mc·Q/c·ρ(1-e-mt)(10-43)
式中Th——混凝土最大绝热温升(℃);
mc——混凝土中水泥(包括膨胀剂)用量(kg/m3);
F——混凝土活性掺合料用量(kg/m3);
K——掺合料折减系数。
粉煤灰取0.25~0.30;
Q——水泥28d水化热(kJ/kg)查表10-81;
不同品种、强度等级水泥的水化热表10-81
水泥品种
水泥强度等级
水化热Q(kJ/kg)
3d
7d
28d
硅酸盐水泥
42.5
314
354
375
32.5
250
271
334
矿渣水泥
32.5
180
256
334
c——混凝土比热、取0.97[kJ/(kg·K)];
ρ——混凝土密度、取2400(kg/m3);
e——为常数,取2.718;
t——混凝土的龄期(d);
m——系数、随浇筑温度改变。
查表10-82。
系数m表10-82
浇筑温度(℃)
5
10
15
20
25
30
m(l/d)
0.295
0.318
0.340
0.362
0.384
0.406
2.混凝土中心计算温度
T1(t)=Tj+Th·ξ(t)
式中T1(t)——t龄期混凝土中心计算温度(℃);
Tj——混凝土浇筑温度(℃);
ξ(t)——t龄期降温系数、查表10-83。
降温系数ξ表10-83
浇筑层厚度
(m)
龄期t(d)
3
6
9
12
15
18
21
24
27
30
1.0
0.36
0.29
0.17
0.09
0.05
0.03
0.01
1.25
0.42
0.31
0.19
0.11
0.07
0.04
0.03
1.50
0.49
0.46
0.38
0.29
0.21
0.15
0.12
0.08
0.05
0.04
2.50
0.65
0.62
0.57
0.48
0.38
0.29
0.23
0.19
0.16
0.15
3.00
0.68
0.67
0.63
0.57
0.45
0.36
0.30
0.25
0.21
0.19
4.00
0.74
0.73
0.72
0.65
0.55
0.46
0.37
0.30
0.25
0.24
3.混凝土表层(表面下50~100mm处)温度
1)保温材料厚度(或蓄水养护深度)
δ=0.5h·λx(T2-Tq)Kb/λ(Tmax-T2)(10-45)
式中δ——保温材料厚度(m);
λx——所选保温材料导热系数[W/(m·K)]查表10-84;
几种保温材料导热系数表10-84
材料名称
密度(kg/m3)
导热系数λ[W/(m·K)]
材料名称
密度(kg/m3)
导热系数λ[W/(m·K)]
建筑钢材
7800
58
矿棉、岩棉
110~200
0.031~0.06
钢筋混凝土
2400
2.33
沥青矿棉毡
100~160
0.033~0.052
水
0.58
泡沫塑料
20~50
0.035~0.047
木模板
500~700
0.23
膨胀珍珠岩
40~300
0.019~0.065
木屑
0.17
油毡
0.05
草袋
150
0.14
膨胀聚苯板
15~25
0.042
沥青蛭石板
350~400
0.081~0.105
空气
0.03
膨胀蛭石
80~200
0.047~0.07
泡沫混凝土
0.10
T2——混凝土表面温度(℃);
Tq——施工期大气平均温度(℃);
λ——混凝土导热系数,取2.33W/(m·K);
Tmax——计算得混凝土最高温度(℃);
计算时可取T2-Tq=15~20℃
Tmax=T2=20~25℃
Kb——传热系数修正值,取1.3~2.0,查表10-85。
传热系数修正值表10-85
保温层种类
K1
K2
1
纯粹由容易透风的材料组成(如:
草袋、稻草板、锯末、砂子)
2.6
3.0
2
由易透风材料组成,但在混凝土面层上再铺一层不透风材料
2.0
2.3
3
在易透风保温材料上铺一层不易透风材料
1.6
1.9
4
在易透风保温材料上下各铺一层不易透风材料
1.3
1.5
5
纯粹由不易透风材料组成(如:
油布、帆布、棉麻毡、胶合板)
1.3
1.5
注:
1.K1值为一般刮风情况(风速<4m/s,结构位置>25m);
2.K2值为刮大风情况。
2)如采用蓄水养护,蓄水养护深度
hw=x·M(Tmax-T2)Kb·λw/(700Tj+0.28mc·Q)(10-46)
式中hw——养护水深度(m);
x——混凝土维持到指定温度的延续时间,即蓄水养护时间(h);
M——混凝土结构表面系数(1/m),M=F/V;
F——与大气接触的表面积(m2);
V——混凝土体积(m3);
Tmax-T2——一般取20~25(℃);
Kb——传热系数修正值;
700——折算系数[kJ/(m3·K)];
λw——水的导热系数,取0.58[W/(m·K)]。
3)混凝土表面模板及保温层的传热系数
β=1/[Σδi/δi+1/βq](10-47)
式中β——混凝土表面模板及保温层等的传热系数[W/(m2·K)];
δi——各保温材料厚度(m);
λi——各保温材料导热系数[W/(m·K)];
βq——空气层的传热系数,取23[W/(m2·K)]。
4)混凝土虚厚度
h'=k·λ/β(10-48)
式中h'——混凝土虚厚度(m);
k——折减系数,取2/3;
λ——混凝土导热系数,取2.33[W/(m·K)]。
5)混凝土计算厚度
H=h+2h'(10-49)
式中H——混凝土计算厚度(m);
h——混凝土实际厚度(m)。
6)混凝土表层温度
T2(t)=Tq+4·h'(H-h')[T1(t)-Tq]/H2(10-50)
式中T2(t)——混凝土表面温度(℃);
Tq——施工期大气平均温度(℃);
h'——混凝土虚厚度(m);
H——混凝土计算厚度(m);
T1(t)——混凝土中心温度(℃)。
4.混凝土内平均温度
Tm(t)=[T1(t)+T2(t)]/2(10-51)
10-7-2-2应力计算公式
1.地基约束系数
(1)单纯地基阻力系数Cx1(N/mm3),查附表10-86
单纯地基阻力系数Cx1(N/mm3)表10-86
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 混凝土 裂缝 形成 控制