最新初二物理学习笔记.docx
- 文档编号:30005679
- 上传时间:2023-08-04
- 格式:DOCX
- 页数:31
- 大小:242.65KB
最新初二物理学习笔记.docx
《最新初二物理学习笔记.docx》由会员分享,可在线阅读,更多相关《最新初二物理学习笔记.docx(31页珍藏版)》请在冰豆网上搜索。
最新初二物理学习笔记
第一章机械运动(2016年12月25日星期日)
第一节长度和时间的测量
1.长度的单位:
千米(km)、分米(dm)、厘米(cm)、毫米(mm)、微米(μm)、纳米(nm);1km=1×10^3m1dm=1×10^(-1)m1cm=1×10^(-2)m1mm=1×10^(-3)m1μm=1×10^(-6)m1nm=1×10^(-9)m。
2.长度的测量:
零刻度线;量程;分度值(相邻两个刻度之间的长度,它决定测量的精确程度)。
3.长度的测量工具:
直尺,卷尺,三角尺;游标卡尺,螺旋测微器。
4.时间的单位:
在国际单位制中,时间的基本单位是秒(second),符号是s。
时间单位还有小时(h),分(min)等。
5.时间的计时仪器:
古代日晷rìguǐ、沙漏;现代是用停表。
6.误差:
在测量长度、时间以及其他物理量时,受所用仪器和测量方法的限制,测量值与真实值之间总会有差别,这就是误差。
我们不能消除误差,但应尽量减小误差。
7.国际单位制:
InternationalSystemofUnits简称SI。
第二节运动的描述
1.机械运动:
在物理学中,我们把物体位置的变化叫做机械运动(mechanicalmotion)。
2.运动的形式:
机械运动,分子、原子运动,电磁运动等。
宇宙中的万物都在以各种不同的形式运动着。
3.参照物:
人们判断物体的运动和静止,总要选取某一物体作为标准。
如果一个物体的位置相对于这个标准发生了变化,就说它是运动的;如果没有变化,就说它是静止的。
这个作为标准的物体叫参照物。
4.物体的运动和静止是相对的。
5.物理实验方法:
一、控制变量法
控制变量法是初中物理实验中常用的探索问题和分析解决问题的科学方法之一.所谓控制变量法是指为了研究物理量同影响它的多个因素中的一个因素的关系,可将除了这个因素以外的其它因素人为地控制起来,使其保持不变,再比较、研究该物理量与该因素之间的关系,得出结论,然后再综合起来得出规律的方法.
这种方法在整个初中物理实验中的应用比较普遍.例如在人教版实验教科书《物理》(八年级上册)第一章第一节关于探究声是怎样传播的实验中,就开始渗透控制变量的思想.因为固体、液体和气体都是传声的介质,我们逐一研究它们分别可以传声时,就必须控制其它两个因素.如果在进行该实验时就给学生恰当地点拨,提出:
“把两张课桌紧紧地挨在一起,一个同学轻敲桌面,另一个同学把耳朵贴在另一张桌子上,听到的敲击声为什么就能认为是桌子传来而不是空气传来的?
”引导学生去分析比较,就能使学生体验到控制变量的思想.在接着的探究影响音调、响度等因素的实验中,把控制变量的思想对学生给予简要的介绍,就会使学生逐步领悟到控制变量法的实质要领,为以后的探究实验作好方法上的准备.
在初中物理中,探究影响导体电阻大小的因素、电流跟电压电阻的关系、影响电热功率大小的因素、影响电磁铁磁性强弱的因素、影响滑动摩擦力大小的因素、决定压力作用效果的因素等等实验,运用了控制变量法.
二、等效替代法
等效替代法是指在研究某一个物理现象和规律中,因实验本身的特殊限制或因实验器材等限制,不可以或很难直接揭示物理本质,而采取与之相似或有共同特征的等效现象来替代的方法.这种方法若运用恰当,不仅能顺利得出结论,而且容易被学生接受和理解.
三、转换法
有的物理量不便于直接测量,有的物理现象不便于直接观察,通过转换为容易测量到与之相等或与之相关联的物理现象,从而获得结论的方法.譬如,在研究电热的功率与电阻关系的实验中,电流通过阻值不等的两根电阻丝产生的热量无法直接观测和比较,而我们通过转换为让煤油吸热,观察煤油温度变化情况,从而推导出那个电阻放热多.教学时不妨设计一问:
为什么研究电热的功率与电阻大小的关系时,还用到似乎与实验无关的煤油呢?
引发学生的思考和讨论,在小结出该实验中煤油的作用的基础上,进而再问:
该实验能否不用煤油而改用其它方式来观察电阻通电后的发热情况?
这样促使学生思维得以发散,转换的思维方法得到训练,设计实验的能力也随着提高了.
四、类比法
类比法是一种推理方法.为了把要表达的物理问题说清楚明白,往往用具体的、有形的、人们所熟知的事物来类比要说明的那些抽象的、无形的、陌生的事物,通过借助于一个比较熟悉的对象的某些特征,去理解和掌握另一个有相似性的对象的某些特征.如:
在研究电压的作用时,借助于看得见而学生比较熟悉的“水压形成水流”的实验作类比,来揭示电压是形成电流的原因.又比如在研究通电螺线管的磁场的实验中,为准确记忆通电螺线管的北极与电流方向的关系,以紧握的右拳头类比为螺线管,四指为线圈并指向电流的方向,则大拇指所指的一端为北极.这样形象直观很容易被学生理解记忆牢固.
五、图象法
图象是一个数学概念,用来表示一个量随另一个量的变化关系,很直观.由于物理学中经常要研究一个物理量随另一个物理量的变化情况,因此图象在物理中有着广泛的应用.在实验中,运用图象来处理实验数据,探究内在的物理规律,具有独特之处.如:
在探究固体熔化时温度的变化规律和水的沸腾情况的实验中,就是运用图象法来处理数据的.它形象直观地表示了物质温度的变化情况,学生在亲历实验自主得出数据的基础上,通过描点、连线绘出图象就能准确地把握住晶体和非晶体的熔化特点、液体的沸腾特点了.
六、理想化方法
理想化方法是指在物理教学中通过想象建立模型和进行实验的一种科学方法.可分为理想化模型和理想化实验.
理想化模型就是指把复杂的问题简单化,把研究对象的一些次要因素舍去,抓住主要因素,对实际问题进行理想化处理去再现原形的本质的东西,构成理想化的物理模型.这是一种重要的物理研究方法.例如探究杠杆平衡条件的实验,杠杆就是一种理想化的模型.杠杆在使用时,由于受到力的作用,都会引起或多或少的形变,然而在研究中把此时的形变忽略不计,这里我们就把杠杆经过理想化的处理,认为它无形变,视为一个硬棒,从而使学生在研究时不被细枝末节的因素影响,顺利地得出杠杆平衡原理.
第三节运动的快慢
1.速度:
在物理学中,把路程与时间之比叫做速度(velocity[vəˈlɒsəti])。
v=s/t,速度的单位是米每秒,符号是m/s。
速度的单位由长度和时间单位组合而成的,这种单位叫做组合单位。
2.匀速直线运动:
我们把物体沿着直线且速度不变的运动,叫做匀速直线运动(uniformrectilinear[ˈju:
nɪfɔ:
m][ˌrektɪˈlɪniə(r)])。
匀速直线运动是最简单的机械运动,它是研究其他运动的基础。
第四节测量平均速度
1.在变速运动中,常用平均速度来粗略描述运动的快慢。
第二章声现象(2016年12月26日星期一)
第一节声音的产生与传播
1.声音的产生:
大量的观察、分析表明,声音是由物体的振动(vibration[vaɪˈbreɪʃn])产生的。
2.声音的记录:
如果将发声体的振动记录下来,需要时再让物体按照记录下来的规律去振动,就会产生与原来一样的声音。
机械唱片机的原理:
唱片上有一圈圈不规则的沟槽。
当唱片转动时,唱针随着划过的沟槽振动,这样就把记录的声间重现出来。
3.声音的传播1:
声音以波的形式传播着,我们把它叫做声波(soundwave)。
4.声音的传播2:
声音的传播需物质,物理学中把这样的物质叫做介质(medium)。
传声的介质既可以气体、固体,也可以是液体;真空不能传声。
5.声速:
声音传播的快慢用声速来描述,它的大小等于声音在每秒内传播的距离。
声速的大小跟介质的种类有关,声速跟介质的温度有关,温度越高声速越快。
150C时空气中的声速是340m/s。
一般情况下声速在气体,液体,固体中逐渐变大。
6.声音的反射:
声音在传播过程中,如果遇到障碍物,就会反射。
当障碍物离人较远时,发出的声音经过较长的时间(大于0.1s)回到耳边,人们就能把回声与原声区分开;当障碍物离得太近时,声波很快被反射回来,回声与原声混在一起,此时人们分辨不出原声与回声,但是会觉得声音更响亮。
音乐厅中常用这种原理使演秦效果更好。
7.骨传导:
声音通过头骨、颌骨也能传到听觉神经,引起听。
科学中把声音的这种传导方式叫做骨传导。
第二节声音特性
1.音调:
我们接触到的声音,有的听起来音调高(pitch),有的听起来音调低。
物体振动得快,发出的音调就高,振动得慢,发出的音调就低。
2.频率:
物理学中用每秒内振动的次数-频率(frequency[ˈfri:
kwənsi)来描述物体振动的快慢。
频率的单位为赫兹(hertz),简称赫,符号为Hz。
频率决定声音的音调,频率高则音调就高,频率低则音调就低。
3.声波:
高音调的波形更密集一些,声音的频率就高;低音调的波形比较稀疏,声音的频率较低。
多数人能够听到的声音频率范围大约从20Hz-20000Hz。
超过20000Hz的声叫超声波(supersonicwave);把低于20Hz的声叫做次声波(infrasonicwave)。
4.响度:
物理学中,声音的强弱叫做响度(loudness)。
5.振幅:
物理学中用振幅来描述物体振动的幅度(amplitude[ˈæmplɪtju:
d]),物体振动得越大,产生的声音的响度越大。
6.音色:
频率的高低决定声音的音调,振幅的大小影响声音的响度。
但是,不同的物体发出的声音,即便音调和响度相同,我们还是能够分辨出它们的不同。
这表明声音中还有一个特性是十分重要的,它就是音色(musical)。
不同发声体材料、结构不同,发出声音的音色也就不同。
第三节声的利用
1.声与信息:
蝙蝠在飞行时会发出超声波,这些声波碰到墙壁或昆虫时会反射回来,根据回声到来的方位和时间,蝙蝠可以确定目标的位置。
蝙蝠采用的方法叫做回声定位。
采用这个原理制成的超声导盲仪可以探测前进道路上的障碍物。
倒车雷达;医生用的B型超声波诊断仪;
2.声与能量:
声波也是一种波动,声波传递能量的性质应用在社会生活的很多方面。
民用洗涤,超声波穿过液体并引起激烈的振动,振动把物体上的污垢敲击下来而不会损坏被洗的物体。
医用医疗,向人体内的结石发射超声波,结石会被击成细小的粉末,从而可以顺畅地被排出体外。
第四节噪声的危害和控制
1.噪声:
从物理学的角度讲,发声体做无规则振动时会发出的声音叫噪声(noise)。
从环境保护的角度讲,凡是妨碍人们正常休息、学习和工作的声音,以及对人们要听的声音产生干扰的声音,都属于噪声。
噪声强弱的等级和噪声的危害:
人们以分贝(decibel[ˈdesɪbel])为单位来表示声音强弱的等级。
0dB是人刚能听到的最微弱的声音;30~40分贝是较为理想的安静环境;70dB会干扰谈话,影响工作效率;长期生活在90dB以上的噪声环境中,听力会受到严重影响并产生神经衰弱、头疼、高血压等疾病;如果突然暴露在高达150dB的噪声环境中,鼓膜会破裂出血,双耳完全失去听力。
为了保护听力,声音不能超过90dB;为了保证工作和学习。
声音不能超过70dB;为了保证休息和睡眠,声音不能超过50dB。
2.控制噪声:
声音从产生到引起听觉有三个阶段,声源的振动产生声音-空气等介质传播声音-鼓膜的振动引起听觉。
因此控制噪声也要从这三个方面着手,防止噪声产生-阻断噪声传播-防止噪声进入声朵。
第三章物态变化(2016年12月27日星期二)
第一节温度
1.温度计:
物理学中通常把物体的冷热程度叫做温度(temperature[ˈtemprətʃə(r)])。
要准确地判断温度的高低,就要用测量温度的工具-温度计进行测量。
2.温度计的工作原理:
家庭和实验室里常用的温度计是根据液体热胀冷缩的规律制成的。
里面的液体有的用酒精,有的用水银,有的用煤油。
温度计有:
实验室用温度计,体温计,寒暑表。
3.摄氏温度:
温度计上的符号0C表示摄氏温度。
摄氏温度的规定:
把在标准大气压下冰水混合物的温度定为00C,沸水的温度定为1000C,分别用00C和1000C表示;00C和1000C之间分成100个等份,每个等份代表10C。
正常人的体温370C。
绝对0度为-273.150C
4.温度计的使用:
首先要看清它的量程,即温度计所能测量温度的范围;然后,还要看清温度计的分度值,也就是一个小格代表的值,以保证读数的正确。
5.正确使用温度计的要点:
温度计的玻璃泡应全部浸入被测的液体中,不要碰到容器底或容器壁;
温度计的玻璃泡浸入被测液体后要稍等一会,待温度计的示数稳定后再读数;
读数时温度计的玻璃泡要继续留在液体中,视线要与温度计中液柱的液面相平。
6.体温计:
体温计用于测量人体温9度。
体温计的刻度范围通常为35-420C。
测体温时,玻璃泡内的水银随着温度升高,发生膨胀,通过细管挤到直管;当体温计离开人体时,水银变冷收缩,细管内的水银断开,直管内的水银不能退回玻璃泡内,所以这表示的是人体的温度。
要使已经升去的水银再回到玻璃泡里,可以拿着体温计用力向下甩,把水银甩下去(其它温度计不允许甩)。
第二节熔化和凝固
1.物态的变化:
固态、液态和气态是物质常见的在种状态。
随着温度的变化,物质会在固态、液态、气态三种状态之间变化。
物质各种状态间的变化叫做物态变化。
2.熔化和凝固:
物质从固态变成液态的过程叫做熔化(melting);从液态变成固态的过程叫做凝固(solidification[səˌlɪdɪfɪ'keɪʃn])。
3.晶体和非晶体:
有些固体在熔化过程中尽管不断吸热,温度却保持不变,有固定的熔化温度,如冰、海波、各种金属。
这类固体叫做晶体(crystal)。
有些固体熔化过程中,只要不断地吸热,温度就不断地上升,没有固定的熔化温度,如蜡、松香、玻璃、沥青。
这类固体叫做非晶体(noncrystal)。
4.熔点和凝固点:
晶体熔化时的温度叫做熔点(meltingpoint);液体凝固形成晶体时也有确定的温度,这个温度叫做凝固点(solidifyingpoint)。
同一物质的凝固点与它的熔点相同。
非晶体没有明确的熔点和凝固点。
5.熔化吸热,凝固放热:
晶体在熔化过程中虽然温度不变,但是必须继续加热,熔化过程才能完成,这表明晶体在熔化过程中吸热。
反过来,液体在凝固成晶体的过程中放热,但是温度不变。
非晶体在熔化或凝固过程中也吸热或放热,但温度不变。
第三节汽化和液化
1.汽化和液化:
物质从液态变为气态的过程叫做汽化(vaporization),从气态变为液态的过程叫做液化(liquefaction)。
2.沸腾:
沸腾(boiling)是液体内部和表面同时发生的剧烈汽化现象。
各种液体沸腾时都有确定的温度,这个温度叫做沸点(boilingpoit)。
3.蒸发:
在任何温度下都能发生的汽化现象叫做蒸发(evaporation[ɪˌvæpə'reɪʃn])。
蒸发只发生在液体的表面。
沸腾与蒸发是汽化的两种方式。
4.液化:
所有气体在温度降到足够低时都可以液化。
另外在一定温度下,压缩气体的体积也可以使气体液化。
液体汽化时要吸热,与此相反,气体液化时要放热。
第四节升化和凝华
1.概念:
物质从固态直接变成气态的过程叫升化(sublimation[ˌsʌblɪ'meɪʃn]),从气态直接变成固态的过程叫做凝化(deposition[ˌdepəˈzɪʃn])。
2.升化吸热,凝化放热
第四章光现象(2016年12月28日)
第一节光的直线传播
1.光源:
太阳以及我们看到的大多数星星都是恒星,宇宙中的恒星都能够发光。
许多东物也能发光,如夏天认晚的萤火虫。
大海深处的水母、灯笼鱼、斧头鱼等也能发光。
所有这些能够发光的物体叫做光源。
2.光的直线传播:
空气、水和玻璃等透明物质叫做介质,光在同种均匀介质中沿直线传播。
3.光线:
为了表示光的传播情况,我们通常用一条带有箭头的直线表示光传播的径迹和方向。
这样的直线叫做光线。
小孔成像、激光引导掘进方向。
4.光的传播速度:
光不仅可以在空气、水等物质中传播,而且可以在真空中传播。
真空中的光速是宇宙间最快的速度。
在物理学中用c表示光速,c=2.99792×108m/s,通常情况下真空中的光速可以近似取为c=3×108m/s。
光在空气中的速度非常接近于c。
光在水中的速度为3/4c,在玻璃中的速度为2/3c。
5.光年:
光在一年内传播的距离叫1光年。
牛郎星与织妇星相距16光年。
第二节光的反射
1.反射:
光遇到桌面、水面以及其它许多物体的表面都会发生反射(reflection)。
我们能够看见不发光的物体,就是因为物体反射的光进入了我们的眼睛。
2.光的反射定律:
经过入射点O并垂直于反射面的直线ON叫做法线,入射光线与法线的夹角i叫做入射角,反射光线与法线的夹角r叫做反射角。
在反身现象中,反射光线、入射光线和法线在同一个平面内;反射光线、入射光线分别位于法线两侧;反射角等于入射角。
这就是光的反射定律(reflectionlaw)。
3.光路的可逆性:
如果让光逆着反射光的方向射到镜面,那么,它被反射后就会逆着原来的入射光的方向射出,这表明,在反射现象中,光路可逆。
如在镜面中看到一位同学的眼睛,那位同学也能通过这个镜面看到你的眼睛。
4.镜面反射和温反射:
镜面很光滑,一束平行光照射到镜面上后,会被平行地反射。
这种反射叫做镜面反射。
(mirrorreflection)。
凹凸不平的表面会把平行的入射光线向四面八方反射。
这种反射叫做漫反射(diffusereflection)。
第三节平面镜成像
1.像:
当你照镜子的时候可以在镜子里看到另外一个“你”,镜子里的这个“人”就是你的像(image)。
2.平面镜成像的特点:
平面镜所成像的大小与物体的大小相等,像和物体到平面镜的距离相等,像和物体的连线与镜面垂直。
平面镜所成的像与物体关于镜面对称。
3.平面镜成虚像:
光源S向四处发光,一些光经平面镜反射后进入了人的眼睛,引起视觉。
由于有光沿直线传播的经验,人会感觉这些光好像是从进入人眼光线的反向延长线的交点处S’处发出的。
S’就是S在平面镜中的像。
由于平面镜后并不存在光源S’,进入眼睛的光并非真正来自S’,所以把S’叫做虚像(virtualimage)。
4.平面镜的应用:
镜子,潜望镜,塔式太阳能电站。
第四节光的折射
1.折射:
光从空气斜射入水中时,传播方向发生了偏折,这种现象叫做光的折射(refraction)。
2.折射定律:
光从空气斜射入水中或其他介质中时,折射光线向法线方向偏折,折射角小于入射角。
当入射角增大时,折射角也增大。
当光从空气垂直射入水中或其他介质时,传播方向不变。
在折射现象中,光路也是可逆的。
3.生活中的折射现象:
筷子在水是折断;河水看起来很浅;用鱼叉捉鱼时要叉鱼的下方;茶碗中原来藏有一个硬币;海市蜃楼。
第五节光的色散
1966年,英国物理学家牛顿用玻璃三棱镜分解了太阳光,这才揭开了光的颜色之迷。
彩虹就是阳光在传播中遇到空气中的水滴,经反射、折射的产生的现象。
1.色散:
太阳光是白光,它通过棱镜后被分解成各种颜色的光,这种现象叫做色散(dispersion)。
用一个白屏来承接,在白屏上就形成一条彩色的光带,颜色依次是红、橙、黄、绿、蓝、靛、紫。
太阳的可见光谱:
太阳的可见光谱中在红光以外是红外光,紫光之外是紫外光。
2.色光的混合:
把红、绿、蓝三种色光按不同的比例混合后,可以产生各种颜色的光,因此把红、绿、蓝叫色光的三原色。
3.看不见的光:
我们把红光之外的辐射叫做红外线(infrared[ˌɪnfrəˈred]ray)。
在光谱的紫端以外,还有一种看不见的光,叫做紫外线(ultraviolet[ˌʌltrəˈvaɪələtray)。
一个物体,当它的温度升高时,尽管看起来外表跟原来一样,但它辐射的红外线却会增强。
红外线用于医疗,还能用于遥控。
紫外线能杀死微生物(紫外线灯灭菌),还能使萤光物发光(验钞机)。
第五章透镜及其应用(2016年12月29日星期四)
第一节透镜(lens)
1.凸透镜凹透镜:
远视镜片中间厚、边缘薄,这样的镜片是凸透镜(convex[ˈkɒnveks]lens)。
近视镜片中间薄、边缘厚,这样的镜片是凹透镜(concave[kɒnˈkeɪv]lens)。
主轴:
通过两个球面球心的直线叫做主光轴,简称主轴。
光心:
主轴上有个特殊的点,通过这个点的光传播方向不变,这个点叫做透镜的光心(opticalcenter)。
2.透镜对光的作用:
凸透镜对光有会聚的作用,凹透镜对光有发散作用。
3.焦点与焦距:
凸透镜能使跟主光轴平行的光会聚在主光轴上的一点,这个点叫做凸透镜的焦点(focus)。
焦点到凸透镜光心的距离叫做焦距(focallength)。
凸透镜两侧各有一个焦点,两侧的两个焦距相等。
F表示焦点f表示焦距。
凸透镜的焦距越小,对光的会聚作用越强。
第二节生活中的透镜
1.照相机:
来自物体的光经过照相机镜头(凸透镜)后会聚在胶片上,开须眉被照物体的像。
照相时,物体离照相机镜头比较远,像是缩小、倒立的。
现在的相机利用光学或电子技术,把倒立的像转变成正立的,便于观察。
2.投影仪:
投影仪上有一个相当于凸透镜的镜头,来自投影片(物体)的光,通过凸透镜后会聚在屏幕上,形成图案的像。
物体离投影仪镜头比较近,像是放大、倒立的。
3.放大镜:
也是一个凸透镜,放大镜放在眼睛与物体之间,适当调整距离,我们就能看清物体的细微之处。
放大镜看到的像是放大、正立的。
4.实像和虚像:
照相机和投影仪所成的像,是光通过凸透镜射出后会聚而成的。
如果把感光板放在像的位置,确实能够记录下所成的像。
这种像叫做实像(realimage)。
凸透镜所成的实像是来自物体的光会聚而成的,它和物体分别位于凸透镜的两侧。
平面镜所成的像是虚像,放大镜所成的像也是虚像。
凸透镜成虚像时,通过凸透镜出射的光没有会聚,只是人眼逆着出射光的方向看去,感觉光是从虚像的位置发出的,物体和虚像位于凸透镜的同侧。
第三节凸透镜成像的规律
规律总结
规律1:
当物距大于2倍焦距时,则像距在1倍焦距和2倍焦距之间,成倒立、缩小的实像。
此时像距小于物距,像比物小,物像异侧。
应用:
照相机、摄像机。
规律1
规律2:
当物距等于2倍焦距时,则像距也在2倍焦距,成倒立、等大的实像。
此时物距等于像距,像与物大小相等,物像异侧。
规律2
规律3:
当物距小于2倍焦距、大于1倍焦距时,则像距大于2倍焦距,成倒立、放大的实像。
此时像距大于物距,像比物大,像位于物的异侧。
应用:
投影仪、幻灯机、电影放映机。
规律3
规律4:
当物距等于1倍焦距时,则不成像,成平行光射出。
规律4
规律5:
当物距小于1倍焦距时,则成正立、放大的虚像。
此时像距大于物距,像比物大,物像同侧。
应用:
放大镜。
规律5
记忆口诀
(1)一倍焦点分虚实,二倍焦点分大小,二倍焦点物像等。
实像总是异侧倒。
物近像远像变大,物远像近像变小。
虚像总是同侧正。
物远像远像变大,物近像近像变小。
像的大小像距定,像儿追着物体跑,物距像距和在变。
(2)一倍焦距分虚实,两倍焦距分大小。
物近像远像变大,物远像近像变小。
注:
这里所指的一倍焦距是说平行光源通过透镜汇聚到主光轴的那一点到透镜光心的距离,也可直接称为焦距;两倍焦距就是指该距离的两倍
凸透镜成像的两个分界点:
2f点是成放大、缩小实像的分界点;f点是成实像、虚像的分界点。
薄透镜成像满足透镜成像公式:
1/u(物距)+1/v(像距)=1/f(透镜焦距)
注:
透镜成像公式是针对薄透镜而言,所谓薄透镜是指透镜厚度在计算物距、像距等时,可以忽略不计的透镜
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 初二 物理 学习 笔记