英文文献翻译.docx
- 文档编号:29941153
- 上传时间:2023-08-03
- 格式:DOCX
- 页数:17
- 大小:152.29KB
英文文献翻译.docx
《英文文献翻译.docx》由会员分享,可在线阅读,更多相关《英文文献翻译.docx(17页珍藏版)》请在冰豆网上搜索。
英文文献翻译
学校代码:
10128
学号:
200910202061
本科毕业设计英文文献翻译
(
题目:
ParticleSwarmOptimization-BasedMaximumPowerPointTrackingAlgorithmforWindEnergyConversionSystem
学生姓名:
赵晓翠
学院:
电力学院
系别:
自动化系
专业:
自动化
班级:
自动化09-2
指导教师:
崔啸鸣讲师
二〇一三年六月
2012IEEEInternationalConferenceonPowerandEnergy(PECon),2-5December2012,KotaKinabaluSabah,Malaysia
Abstract
Duetothenatureofunpredictedwindspeed,determiningtheoptimalgeneratorspeedtoextractthemaximumavailablewindpoweratanywindspeedisessential.Therefore,itissignificanttoincludeanintelligentcontrollerthatcantrackthemaximumpeakregardlessofwindspeed.Thispaperdescribesthedesignanddevelopmentofparticleswarmoptimization(PSO)-basedmaximumpowerpointtracking(MPPT)algorithmtovariable-speedfixed-pitchwindturbines.Otherthantheelectricalpowersubjectedtomaximization,theproposedalgorithmdoesnotneedanyadditionalsensor.Inaddition,theMPPTalgorithmdoesnotrequireanypriorknowledgeofthewindenergysystem.Unliketheconventionalsearchoptimizationmethod,PSO-basedMPPTalgorithmproducesalmostnegligibleoscillationsatthemaximumpoweroncethetruepeakislocated.Inshort,theproposedMPPTissimple,flexible,accurateandefficientinmaximumwindpowertracking.Inthiswork,MATLAB/SimulinksimulationpackageisusedtosimulatetheperformanceoftheproposedMPPTalgorithm.
Keywords-particleswarmoptimization(PSO);maximumpowerpointtracking(MPPT);hill-climbsearching(HCS);windenergysystem.
I.INTRODUCTION
Windenergysystemshavegainedtremendousattentionoverthepastdecadeasoneofthemostpromisingrenewableenergysourcesduetotheprobabledepletion,highcosts,andnegativeenvironmentalimpactsofconventionalenergysources.Windenergyisapollution-freeandinexhaustiblesource.Itismostlikelywindenergycouldbeoneofthepotentialsourcesofalternativeenergyforthenearfuture[1],[2].
Besidesbeingdependentonthewindspeed,theamountofmechanicalenergythatcanbeextractedfromthewindisgovernedbytheratiooftherotationalspeedtowindspeed.Thereisaspecificoptimalratioforeachwindturbine,whichiscalledtheoptimaltipspeedratio(TSR)oratwhichtheextractedpowerismaximum.Asthewindspeedisinstantaneouslyvarying,itisessentialfortherotationalspeedtobevariabletomaintaintheequalityoftheTSRtothedesirableoneatalltimes.
Inordertodeterminetheoptimaloperatingpointofthewindturbine,includingaMPPTalgorithmtothesystemisessential.MuchhasbeenwrittenonthetopicofMPPTalgorithms,especiallyforwindenergysystems.ThemanydifferenttechniquesforMPPTofwindenergyconversionsystemshavebeenreviewedanddiscussedindepthin[1],[2],[3].
AmongtheavailableMPPTalgorithms,hill-climbsearching(HCS)methodiswidelyusedinwindenergysystemstodeterminetheoptimaloperatingpointthatwillmaximizetheextractedenergy.Thismethodisbasedonperturbingacontrolvariableinsmallstep-sizeandobservingtheresultingchangesinthetargetfunctionuntiltheslopebecomeszero.Sinceitdoesnotrequirepriorknowledgeofthewindturbinescharacteristiccurve,HCSmethodisindependent,simple,andflexible.However,itfailstoreachthemaximumpowerpointsunderrapidwindvariationsifusedforlargeandmediuminertiawindturbines.Additionally,choosinganappropriatestep-sizeinMPPTalgorithmisnotaneasytask;thoughlargerstep-sizemeansafasterresponsebutitcreatesmoreoscillationsaroundthepeakpointwhichreducesthesystemefficiency;asmallerstep-sizeimprovesefficiencyyetreducestheconvergencespeed[4],[5],[6].
Inrecentyears,aswarmintelligence-basedalgorithm,aparticleswarmoptimization(PSO),hasbeenusedacrossawiderangeofapplicationstolocatetheglobaloptimalsolutions.Itisacomputationalmethodthatoptimizesaproblembyiterativelytryingtoimproveacandidatesolutionwithregardtoagivenmeasureofquality.AsaMPPTalgorithm,PSOhasbeensuccessfullyappliedtoaphotovoltaic(PV)systembymanyauthors[7],[8],[9].However,ithasnotbeenusedinMPPTalgorithmforwindenergysystems,excepttoadaptthelearningratesintheback-propagationprocess,aimingatimprovingthelearningcapabilityoftheneuralnetwork-basedMPPT,asreportedin[10],[11].ComparedwithHCS,PSOincreasestheefficiencyoftherenewableenergyconversionsystem,whereitprovidesanadaptivestep-sizethatmayapproachzeroatthemaximumpoint,sothatitdoesnotproducetheoscillationsaroundthepeakpoint.
Inthiswork,thePSO-basedMPPTisusedtocontroltheduty-cycleoftheboostconverterthatinterfacesthewindturbinetotheload,inawaythatguaranteesextractingthemaximumavailablepowerfromthewind.Theremainderofthepaperisorganizedasfollows:
sectionIIdescribesthesimulatedwindenergysystem,insectionIII,thePSO-basedMPPTalgorithmisexplainedandappliedtothewindenergysystem.Followingthis,thesimulationresultsarepresentedanddiscussedandfinally,aconclusionisdrawn.
II.SYSTEMOVERVIEW
Fig.1illustratestheschematicdiagramofthesimulatedwindenergysystem.Thesystemsuppliesaresistiveloadandconsistsofawindturbinerotor,permanentmagnetsynchronousgenerator(PMSG),rectifier,andaboostConverter.
Figure1AbriefblockdiagramoftheproposedPMSGwind-energysystem.
A.WindTurbineCharacteristics
Thewindturbineconvertsthewindenergyintomechanicalenergy,whichthenrunsageneratortocreateelectricalenergy.Themechanicalpowergeneratedbyawindturbinecanbeexpressedas[12]:
(1)
Wheretheairdensity(kg/m3),Risistheturbinerotor(m),Visthewindspeed(m/s),andisthecoefficientofperformance.
Theturbinepowercoefficient(CP)describesthepowerextractionefficiencyofthewindturbine.Itisanonlinearfunctionofboththetipspeedratio(
)andthebladepitchangle(
).Whileitsmaximumtheoreticalvalueisapproximately0.59,inpracticalityitliesbetween0.4and0.45[13].Thetipspeedratioisavariableexpressingtheratioofthelinearspeedofthebladetipstotherotationalspeedofthewindturbine,andcanbeexpressedby:
(2)
Manydifferentversionsoffittedequationsforhavebeenusedinpreviousstudies.Thispaperdefineditbasedonthefollowing[1]:
(3)
(4)
Duetotheassumptionofafixedpitchrotor,thispapersetstheangle(
)tozero.Hence,thecharacteristicsofmainlydependon.Byusing(3),thetypicalversusλcurveisshowninFig.2.Asaforementioned,thereisanoptimumvalueofTSRthatleadstomaximumpowercoefficient.Theforthegivenwindturbineis8.131,whichcorrespondstoaof0.48.IftheTSRismaintainedconstantlyatitsoptimalvalue,thisensuresthattheenergyextractedisinitsmaximumoperatingpointtoo,asshowninFig.3.
Figure2Thecharacteristicofthepowercoefficientasafunctionofthetipspeedratio.
Figure3Characteristicsofturbinepowerasafunctionoftherotorspeedforaseriesofwindspeeds.
B.PermanentMagnetSynchronousGenerator(PMSG)
Amongtheelectricgenerators,PMSGispreferredduetoitshighefficiency,reliability,powerdensity;gearlessconstruction,lightweight,andself-excitationfeatures[1].ThispaperusesthesimplifiedmodelofthePMSGrepresentedin[14],atwhichthegeneratorandrectifierareconvenientlyrepresentedbyanequivalentcircuitviewedfromthedcsideoftherectifier.SuchanequivalentcircuitisshowninFig.4,wherethegeneratorismodeledbyitsopencircuitEMF(ew)anditsequivalentresistanceRW.
Figure4SimplifiedmodelofthePMSGandrectifier.
ThesourceEMF(ew)isproportionaltothegeneratorspeed(
),andtheequivalentresistancehasavalueoftwicetheperphaseresistanceofthegenerator.
(5)
Neglectingdampingandfriction,themechanicaldynamicscanbereducedto:
(6)
(7)
whereKwisthegeneratorEMFconstant,Tmistheturbinemechanicaltorque,andTeisthegeneratorelectricaltorque.
C.BoostConverter
Toimprovethesimulationspeedsignificantlyandatthesametimekeepsthedesirableaccuracy.Inthispaper,ratherthansimulatingthedetailedmodeloftheboostconverter,theaveragedmodelrepresentedin[15]isusedinsimulation.Intheaveragedmodel,thepowerelectronicswitchanddiodearereplacedbythecombinationofcontrolledcurrentandvoltagesources.Itcansimulatetheconverterbehaviorpreciselyatlargetimescalewithreasonableaccuracy.
Figure5Nonlinearaveragedcircuitmodeloftheboostconverter.
III.PSO-BASEDMPPTALGORITHM
Particleswarmoptimization[9],[8],[16]isacomputationalmethodthatoptimizesaproblembyiterativelyimprovesacandidatesolutionwithregardtoagivenmeasureofquality.Itstartswithagroupofrandompotentialsolutions,whicharecalledparticles.Theseparticlesflyaroundinamultidimensionalsearchspacesearchingfortheoptimumsolutionbyadjustingtheirpositionsdependingontheirownexperienceaswellastheexperienceoftheotherparticles.ToberealizeasaMPPTalgorithm,theparticlepositioninPSOrepresentstheduty-cycle,thevelocityisthestep-sizeoftheduty-cycle,andtheobjectivefunctionismaximizingtheconverterpower.AsdepictedinFig.6,theparticlepositionandvelocityareupdatediterativelybasedonthefollowingtwoequations:
(8)
(9)
wherewisdefinedasthemomentumfactor,r1andr2aretworandomvaluesbetween(0,1),c1andc2arepositiveconstantsknownasaccelerationconstants.
Figure6Conceptofmodificationofasearching
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 英文 文献 翻译