仓储管理计算题.docx
- 文档编号:29877909
- 上传时间:2023-08-03
- 格式:DOCX
- 页数:32
- 大小:240.73KB
仓储管理计算题.docx
《仓储管理计算题.docx》由会员分享,可在线阅读,更多相关《仓储管理计算题.docx(32页珍藏版)》请在冰豆网上搜索。
仓储管理计算题
WarehouseGroundAreaUtilizationRate
某自动化立体仓库占地面积4500m2库房的总容量为5000吨,报告期365天(含节假日60天),该仓库每天工作时间8小时。
期初固定资产平均占用780万元,流动资产平均占用200万元,平均货物储存量1000吨,期末固定资产平均占用775万元,流动资产平均占用180万元,平均货物储存量1200吨。
年仓储业务收入500万元,全年消耗货物总量12000吨,全年货物平均存储量1000吨,仓库有效堆放面积900m2巷道堆垛机额定载荷量1000kg,实际工作载荷700kg,报告期设备实际工作时数800小时。
请计算:
仓库面积利用率、仓库容积利用率、设备能力利用率、设备时间利用率。
例:
某自动化立体库占地面积4500m2库房的总容量为5000吨单报告期365天(含节假日60天),该仓库每天工作时间为8小吋’期初固定资产平均占用780万元,流动资产平均占用200万元,平均
775万元流动资产平均占用180万元,平均货物储存量1200吨,年仓储业务收入500万元,全年消耗货物总量为120Q0吨,全年货物平均储存量1000吨,仓库有效堆放面积900m2?
巷道堆垛机额定载荷量1000kg.实际工作载荷700kg,报告期设备实际工作时数1800小时“
1.仓库面积利用率=900/4500=0.2
2.库房容积利用率=1000/5000=0.2
3.设备能力利用率=700/1000=0.7
4.设备时间利用率=1800/(365-60)*8=0-74
5.期初单位货物固定资金占有量=780/1000=0.78万元/吨
6.期初单位货物流动资金占有量=200/1000=0.2万元/吨
7.期末单位货物固定资金占有量=775/1200=0.65万元/吨
8.期末单位货物流动资金占有量=180/1200=0.15万元/吨
9.单位货物固定资金平均占有量=[(780+775)/2]/1000=0.7775万元/吨
10.单位货物流动资金平均占有量=[(200+180)/2]/1000=0.19万元/吨
11>流动资金周转次数=500/185=2.7^
12.沛对1溶仝冏蛛灭豹/«s*^Rn/snn=i
2•某仓库在2006年年营业额为810.5万,该库在这期间共接受订单560份,但由于运输车辆等问题,实际装运了485份。
该库管理人员有36人、技术和作业人员共260人,其中直接作业人数为140人。
请计算该库2006年的仓库生产率、人员作业能力和直间工比率各为多少?
仓库生产率=
某时间装运的订单数
X100%=86.6%
每时间接受的订单数
人员作业能力=
仓库营业额
==2.74(
仓库总人数
万兀/人)
直间工比率=
直接作业人数
总人数-直接人数
X100%=89.7%
3.某一连锁超市企业的年初库存值为124万元,年末库存值为93万元,全年销售额为2450万元。
问该企业的库存周转次数为多少?
周转天数是多少?
解:
周转次数(率)二年销售额/年平均库存;年平均库存=(年初库存+年末库存)/2周转天数=365/周转次数
年平均库存=(124+93)/2=108.5周转次数=2450/108.5=22.58(次)周转天数二365/22.58=16.16(天)
《仓储管理》练习题(计算题部分)
1.某储运公司有一座通用仓库,仓库基本情况如下:
2
(1)库区有效面积85000m,其货架区(包括运输道路、检验、包装、加工作业区)
82000m2,行政生活区1000m2,货物有效储存区(即不包括运输道路、检验、包装、加
工作业)实际有效面积为80750m2;
(2)
仓库全年总容量为9000万元,货物出库总量为7500万元,入库总量为8500万
元;
(3)
仓库年初库存215万元,年末库存410万元,月均库存量以件数折合为650000
件;
(4)
仓库全年仓储费用273万元;库区全员工作日为250工日;
要求根据以上资料,试计算:
(1)库房容积利用率;
(2)仓库面积利用率:
(3)货物年周转
次数:
(4)平均储存费用:
(5)全员劳动生产率
工日
库房容积利用率
库房总容量
年平均库存量(丝叫匚2.36%
2900010
(2)
仓库面积利用率
仓库有效堆放面积
仓库总面积
80750
100%100%=95%
85000
(3)
货物年周转次数
全年货物出库总量
货物平均储存量
75001042,
215410104=2(次)
(4)
平均储存费用
每月储存费用总额
月平均储存量
运—0.35(元)
126510
件全年货物出入库总量
(5)全员劳动生产率件
/工日丿仓库全员年工日总数
75008500104
2一家特种仓库年仓储作业及有关数据如下:
(3)
仓库全年消耗的材料及燃料费为30万元,人工及福利费为365万元,仓库租赁
费405万元,固定资产折旧及其他费用合计160万元。
计算这家仓库货物周转次数和平均存
货费用。
每月储存费用总额
平均存货费用二每月存货费用总额二竺“8(元/件)
月平均存货量100
和进货总费用。
解:
Q=吁「2121505000=4500(台)
进货次数玄济订需批量RqqQ需®次)
进货周期二订货次数晋诃(天)
121505000450U.27000元
45002
4.一家企业为了对现有库存商品进行有效的控制和管理,计划按年耗用金额将库存商品分
为ABC三类。
并按商品数量占比20%30%和50%分别确定ABC类物品建立ABC库存管
理系统。
有关10种商品的库存资料如下表所示。
试用ABC分类法将这10种商品分为A、
B、C三类。
商品编号
单价(元)
需求量(件)
商品编号
单价(元)
需求量(件)
A
5.00
40000
F
5.00
250000
B
8.00
190000
G
6.00
15000
C
7.00
4000
H
4.00
80000
D
4.00
100000
I
5.00
10000
E
9.00
2000
J
7.00
5000
(1)计算出各种库存品的年耗用金额,并按从大到小排序:
商品编号
年耗用金额
次序
A
20000
5
B
1520000
1
C
28000
9
D
400000
3
E
18000
10
F
1250000
2
G
90000
6
H
320000
4
I
50000
7
J
350008
商品编号
年耗用金额(元)
累计耗用金额(元)
累计百分比(%
分类
B
1520000
1520000
38.9
A
F
1250000
2770000
70.8
A
(2)计算出各库存的累积耗用金额和累积百分比,(3分)
D
400000
3170000
81.1
B
H320000349000089.2B
序号
货物单价(元)
数量(个)
价值(万元)
1
10000以上
10
12
2
5001—10000
17
13
A
200000
3690000
94.3
B
G
90000
3780000
96.6
C
I
50000
3830000
97.9
C
J
35000
3865000
98.8
C
C
28000
3893000
99.5
C
E
180003911000
100.0
C
(3)ABC
分类
分类
每类金额(兀)库存品数百分比(%
耗用金额百分比(%
累计耗用金额百
分比(%
A类
B、F
2770000
20
70.8
70.8
B类
D、H、A
920000
30
23.5
94.3
C类
G、I、J、C
、E221000
50
5.7
100.0
3
4001—5000
15
6.5
4
3001—4000
22
7
5
2001—3000
27
6.5
6
1001—2000
45
5
7
0—1000
64
2
合计
200
52
5.一家流通仓储库存货物数量与价值统计情况如下:
试采用ABC分析法对该企业的货物进行分类。
解:
序号
货物单价
(元)
数量
数量比
率(%)
数量累计比率(%)
价值
(万兀)
价值比率
(%)
价值累计比率(%)
1
10000以上
10
5.0
5.0
12
23.1
23.1
2
5001—10000
17
8.5
13.5
13
25.0
48.1
3
4001—5000
15
7.5
21.0
6.5
12.5
60.6
4
3001—4000
22
11.5
32.0
7
13.5
74.0
5
2001—3000
27
13.5
45.5
6.5
12.5
86.5
6
1001—2000
45
22.5
68.0
5
9.6
96.2
7
1—1000
64
32.0
100
2
3.8
100
合计
200
100
52
100
货物分类
序号
分类
1、2、3
A类
4、5
B类
6、7
C类
1某公司经过对某种产品库存的仔细研究,发现其存货持有成本为产品的单位成本的25%,
并且由于出现缺货所导致的延期交货的成本为每年产品的单位成本的150%。
这种产品的单
位成本为400元,每次再订货成本为100元。
针对这种产品的每年的需求是恒定不变的,为
300个产品单位,并且所有的缺货情况都可以通过延期交货的方式来进行弥补。
最佳的订购政策是什么?
在一年中有多少比例的时间是通过延期交货来满足需求的?
2.某种产品的需求是每年2000个产品单位,每一个订单的成本是10元,每年的存货持有成本是产品单位成本的40%,而单位成本根据订单批量变化的规律如下:
订单批量小于500个产品单位,单位成本为1元;
订单批量在500~999个产品单位之间,单位成本为0.80元;
订单批量大于等于1000个产品单位,单位成本为0.60元;在这种情况下,最佳的订单批量是多少?
3.C公司生产中使用的甲零件,全年共需耗用3600件。
该零件既可自行制造也可外购
取得。
如果自制,单位制造成本为10元,每次生产准备成本34.375元,每日生产量32件。
如果外购,购入单价为9.8元,从发出定单到货物到达需要10天时间,一次订货成本72
元。
假设该零件的每年单位储存成本为4元,一年按360天计算。
要求通过计算确定C公
司自制和外购方案哪个方案更好。
例题1
例:
某公司发现,针对某种产品的需求呈正态分布,需求的平均值为每年2000个产品单位,标准偏差为400个产品单位。
产品的单住成本为100欧元,订货至交货周期为3周.请计算在服务水平为9S%的情况下的安全存货是多少?
解:
已知条件为旷心=400个产品单位,L=3周
查表,对应95%的服务水平,2值等于1.64,故可以得出:
安全库存=乙箕6)xl12=1,64況400X(3/52)1/2=158(个产品单位)
例题2.某公司每年以每个单位30美元的价格采购6000个单位的某种产品。
在整个过程中,处理订单和组织送货要产生125美元的费用,每个单位的产品所产生的利息费用和存储成本加起来需要6美元。
请问针对这种产品的最佳订货政策是什么?
解:
已知:
需求D二每年6000个单位的产品
单位购买价格:
P=每个单位的产品30美元
订货费用:
5=每个订单125美元
库存保管费:
H二每年每个单位的产品6美元
=〔(2X125X6000)/6〕1/2=500(个产品单位)
最佳的订单间隔时间:
N=D/Q=6000/500=12
订货周期:
T=Q/D=1个月
最佳订货政策是:
批量为500单位,每年订货12次,每月订货一次
例题3.某种产品的需求为每个月100个产品单位。
该产品的单位成本为50
元,订货成本为50元,库存持有成本(保管费用)为每年单位成本的25%,延
期交货的缺货成本为每年单位成本的40%。
请你为该产品确定一个最佳存货政
解:
已知:
D=100X12=1200(个产品单位/年)
P=50元,S=50元,H=50X0.25=12.5(元/产品单位X年)
=(2X1200X50/12.5)1/2X(1+12.5/20)1/2
=125(个产品单位)
=(2X1200X50/12.5)1/2X[20/(12.5+20)1/2
=77(个产品单位)
t1=V*/D=77/1200=0.064(年)=3.3(周)
t2=(Q-V*)/D=(125-77)/1200=0.04(年)=2.1(周)
t=t1+t2=3.3+2.仁5.4(周)
每次订货125个产品单位,订货间隔周期为5.4周,最大库存为77个单位。
规模确定方法
一家公司要建设配送中心,向中心为25家店铺配送商品,每家店铺平均面积400m2,
每月销售量平均800箱商品。
每箱长宽高尺寸为0.4m、0.5m、0.4m。
假定未来销售增长
修正系数0.2,配送中心商品平均周转次数为3次/月,最大堆垛高度为2m,存储面积修正
系数为0.3。
计算该配送中心最多需要多少存储面积。
解:
ps总销售量=25*800=20000Q=(1+0.2)*20000=24000
q=0.4*0.5*0.4=0.08m3H=2m
Q=Q/T=24000/3=8000P存储空间需要量=8000*0.4*0.5*0.4=640m33
St=P/H=640/2=320S配送中心总规模=(1+0.3)*320=416m2
答:
该配送中心最多需要416怦存储面积。
一家公司仓库购入1200箱瓷砖,包装体积长0.5m,宽0.5m,高0.4m,毛重22kg,净
重20kg。
用托盘多层堆码,托盘规格为1.04mx1.04m,托盘重量5kg。
托盘的承压能力为
400kg,限装2层。
库房地坪单位面积载荷为1t。
问:
该批货物的储存最少需要多少托盘,
最少多少堆垛?
实际占用多少面积?
如果面积利用系数为0.7,则需仓库面积应该为多大?
解:
按长宽计算每层托盘可放:
(1.04/0.5)*(1.04/0.5)^2*2=4箱
每个托盘可放:
4*2层=8箱
每个托盘总量=8*22+5=176+5=181kgV库房地坪单位面积载荷1t
需要托盘数量:
1200/8=150个
按托盘承受压力可堆码:
400/181=2.2疋2层托盘
存放面积=1.04*1.04*(150/2)=81.12m2
所需仓库面积=81.12/0.7=115.885〜116m
答:
最少需要150个托盘,150/2=75堆垛,仓库面积116m
某企业准备建一综合型仓库,其中就地堆码货物的最高储存量为600吨,仓容物资储存
定额为3吨/平方米,采用货架存放的货物最高储存量为90吨,货架长10米、宽2米、高3
米,货架的容积充满系数为0.6,货架的储存定额为200公斤/立方米,若该面积利用率达到
75%,则该仓库需要多少货架?
使用面积应为多少平方米?
解:
堆码的面积=600/3=200m
每个货架可能存放的重量=10*2*3*0.6*0.2=7.2t
所需货架数量=90/7.2=12.5疋13个
货架所占S=10*2*13=260m
有效S=200+260=460m
使用面积=460/0.75=613.333约等于614m
答:
该仓库需要13个货架,使用面积为614m
(1)测定配送及储存商品总量Q=(1,)ps
Q为总的配送/储存商品数量(各店铺总销售量)
P为单位面积销售量
S为各店铺总的营业面积。
d为销售量增长变化的修正参数(一般大于0);
例:
假定20家店铺,s=10万m2,p=2件/m2,=0.2
总销售量=10万x2=20万件
总配送量=总销售量=(1+0.2)X20万=24(万件)
(2)确定配送中心总规模。
Q
Q=-
Q平均商品配送/储存量Q为商品配送量(总周转量)T为平均周转次数
例:
假定20家店铺,s=10万m2,p=2件/m2,=0.2
各店铺总销售量=10万X2=20(万件)
配送/储运商品量=(1+0.2)X20万=24(万件)
假定T=6次/月,则=24/6=4(万件)
-P
P=QqStS=(1;)
H
P为储存空间需要量q为平均商品占有空间(单位商品空间占有)
St为仓库实际储存面积H商品平均堆码高度£面积修正系数(考虑各功能区的比例)
例:
假定T=6次/月,=24/6=4(万件)
假定q=0.4X0.4X0.5=0.08m3,H=2m
则P=4万X0.08=3200(m3)St=3200/2=1600(m2)
假定&=0.2,贝US=(1+s)St=(1+0.2)1600=1920(m2)
题中配送中心的面积为1920m2
仓库面积计算例题:
某平房仓库进8000箱力波啤酒,包装体积长0.3m,宽0.3m,高0.4m,毛重12kg,净重10kg,用托盘单层堆码,托盘规格为1.04mX1.04m(托盘重量不计),库房地坪单位面积载荷为1t,
包装的承压能力为50kg,可用高度为3m。
问:
该批货物的储存需要多少托盘,至少需要多少面积?
如果面积利用系数为0.7,则需仓库面积应该为多大?
解:
按可用高度计算可堆码:
3十0.4=7.5箱。
按包装承受压力计算可堆码4箱,因此以4箱计算。
按宽计算每个托盘每层可放:
(1.04-0.3)X(1.04-0.3)〜3.5X3.5~3X3=9箱。
每个托盘可放箱:
4X9=36箱。
每个托盘总重量=36X12=432kg,小于库房地坪单位面积载荷1t,因此本方案可行。
需要的托盘数量:
8000-36=222.2疋223个
存放面积=1.04X1.04X223=241.20m2
所需仓库面积=241.20-0.7=344.57m2
答:
略
如考虑托盘堆垛,也可以计算仓库面积
例2:
某配送中心建一综合型仓库,计划用两种储存方法:
一是就地堆码,其货物的最高储存量为
1200吨,这种货物的仓容物资储存定额是5吨/平方米;另一种是货架储放,其货物最高
储存量为630吨,货架长8米、宽1.5米、高4米,货架容积充满系数为0.7,货架储存定
额是150公斤/立方米,若该库的面积利用系数是0.5,则需要货架多少?
设计此仓库的有
效面积是多少?
使用面积是多少?
解:
堆码的面积=总量/储存定额=1200/5=240平方米
每个货架可能存放的重量=货架体积*容积系数*储存定额=(8*1.5*4)*0.7*0.15=
5.04吨
所需货架数量=货架储存总量/每个货架可存重量=630/5.04=125个
货架所占面积=每个货架地面积*货架数量=8*1.5*125=1500平方米
有效面积=堆码的面积+货架所占面积=240+1500=1740平方米
使用面积=有效面积/面积利用系数=1740/0.5=3480平方米
配送路线优化方法
在物流系统优化技术中,还有一类重要的优化技术就是对配送中心配送路线优化技术。
随着配送中心的广泛使用,作为直接影响配送中心的运营成本与效率的配送路线规划问题日
益引起人们的重视。
在很多批发零售型配送中心的日常配送活动中,配送中心的车辆一次要
顺序给多个用户配送货物,配送完所有货物后再返回到配送中心。
另外一些中心配送中心向所属配送网络中多个子配送中心配送货物也属于此类型。
这些问题大致可以归结为基本问题
中的旅行商问题和中国邮递员问题。
一、旅行商问题
旅行商问题可以总结为一个推销员从城市1出发到其他城市中去,每个城市他去一次,
并且只去一次,然后回到城市1,问他如何选择行程路线,从而使总路程最短?
解决旅行商问题的算法目前已经有多种。
下面主要介绍两种:
最邻近法和节约算法。
二、中国邮递员问题
中国邮递员问题可以总结为“一个邮递员每次送信,从邮局出发,必须至少依次经过它负责投递范围的每一条街道,待完成任务后仍然回到邮局,问他如何选择投递路线,从而
使自己所走的路程最短?
”为了说明这类问题的具体解法,首先需要了解一下一笔画问题和
欧拉图。
(1)给定一连通多重图G,若存在一条链,过每边一次,且仅过一次,则这条链称为欧拉链。
若存在一个简单圈,过每边一次,称这个圈为欧拉圈,一个图若有欧拉圈,则称为欧拉图。
显然,如果一个图若能一笔画出,则这个图必定是欧拉圈或含有欧拉链。
(2)给定下列定理及推论。
定理:
连通多重图是欧拉图,当且仅当G中无奇点。
以点V为端点的边的个数称为V
的次,次为奇数的点称为奇点。
在任一个图中,奇点的个数为偶数。
推论:
连通多重图G有欧拉链,当且仅当G中恰有两个奇点。
如果某邮递员所负责范围内,街道中没有奇点,那么他可以从邮局出发,走过每条街道一次,且仅一次,最后回到邮局,这样他所走的路线就是最短路线。
对于有奇点的街道,它就必须在某条街道上重复走多次。
在下面的图7-24中,邮递员可以按V1-V2-V4-V3-V2-V4-V6-V5-V4-V6-V5-V3-V1,
结果[V2,V4],[V4,V6],[V6,V5]三条边各重复走一次。
如果按照另外一条路线Vi-V2
-V3-V2-V4-V5-V6-V4-V3-V6-V5-V3-V1,贝V[V3,V2],[V3,V5]各重复走一次。
显然两种
走法的总路程差就等于重复边的总权数之差。
因而如果我们把这些重复边加在原来的图上,构成新图7-25和7-26,原来的问题就转化为在含有奇点的图中增加一些重复边,并且使重复边的总权数最小。
这是中国邮递员问题的基本解决思路。
图7-26邮递员行走路线图3
下面用一个例子来说明中国邮递员问题的具体解决步骤。
一般把
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 仓储 管理 算题