哈工程水声学教案DOC.docx
- 文档编号:29756749
- 上传时间:2023-07-26
- 格式:DOCX
- 页数:14
- 大小:89.50KB
哈工程水声学教案DOC.docx
《哈工程水声学教案DOC.docx》由会员分享,可在线阅读,更多相关《哈工程水声学教案DOC.docx(14页珍藏版)》请在冰豆网上搜索。
哈工程水声学教案DOC
《水声学》
2005~2006学年第一学期
教案
水声工程学院编
2005年12月
第一章绪论
声波在水中的传播性能最好:
在海水中,光波和无线电波的传播衰减都非常大,传播距离有限;声波在水中的传播性能好得多:
利用深海声道效应,人们可以在5000公里以外,清晰地接收到几磅TNT炸药爆炸时所辐射的声信号(1公斤=22磅)。
1.1水声学发展简史
水声学的迅速发展:
始于第二次世界大战初期
声纳起源:
1490年,意大利列昂纳多?
芬奇在摘记中写道:
“如果使船停航,将长管的一端插入水中,而将管的开口放在耳旁,则能听到远处的航船。
”——它是人类利用水声探测水下目标的最早记载,这种原始“声纳”一直到第一次世界大战还广为采用。
水声的第一次定量测量:
1827年,瑞士物理学家D.Colladon和法国数学家C.Sturm合作,在日内瓦测量了声速,测得的声速值为1435米/秒,与现代测量值十分接近。
水声换能进展:
1840年,焦耳发现了磁致伸缩效应,1880年皮埃尔?
居里发现了压电效应;在此基础上,后人支撑和发展了水声压电换能器和磁滞伸缩换能器,实现水中电能和声能之间的转换。
水声第一个回声定位方案:
1912年,英国“泰坦尼克号”和冰山相撞海难事件发生后不久,英国人L.F.Richardson提出水下回声定位方案,他本人未能实现这一方案。
军用声纳发展(第一次世界大战):
第一次世界大战后期,反潜成为一个主要研究方向;法国物理学家B.Langeven和俄国电气工程师C.Chilowsky采用电容发射器和碳粒接收器作了水下目标的探测实验,1916年接收到海底回波和200米以外的一块装甲板的回波;1917年Langeven研究成功了石英-钢夹心换能器,并利用了真空管放大器,首次将电子学应用于水声技术;1918年,成功地探测到1500米以外的水下潜艇的反射声。
他首次实现了利用回声探测水下目标。
第一次世界大战后:
水声技持续发展,1925年研制用于传播导航的水声设备——回声测深仪。
第二次世界大战:
进一步推动水声技术的发展,取得很多成果:
主、被动声纳,水声制导鱼雷,音响水雷和扫描声纳等。
第二次世界大战后:
随着电子信息技术和水声技术的迅速发展,形成了低频、大功率、大基阵和综合信号处理为特征的新一代声纳。
近年来,最佳时空增益处理机理论的发展、信号处理的自适应技术和大规模集成电路的应用,又酝酿更新一代水声设备的诞生。
水声物理研究:
在两次大战期间,人们对海水中声波传播规律了解甚少,感到探测距离随季节和一天的“早、中、晚”变化莫测,使水声设备的使用受到限制,“下午效应”就是这方
面的一个例子。
促进各海军国进行水声物理方面的一系列研究,得到了理论和实验的总结规
律:
海水中声速分布及其对声传播的影响;用射线理论分析海洋中声传规律;海洋中声传播
衰减规律和吸收机理;海底、海面的声学特性及对传播的影响;舰船噪声、混响,海洋环境
噪声等水声干扰特性的了解;舰船等目标的反射本领等。
为水声设备合理选择参数提供依据,形成一门独立学科。
二次世界大战后,水声技术在民用方面的应用日益广泛,海洋开发、捕鱼、海底地质测绘、导航、水下机器人研制等方面都有水声设备的应用。
1.2水声学的研究对象
士严水声物理:
它是水声工程应用的理论依据,为工程设计提供合适参数。
水声学乜
水声工程:
它对水声物理提出新的内容和要求,为其研究提供新的手段,并促进其发展
水声物理:
从水声场的物理特性分析出发,主要研究海水介质及其边界(海底、海面)的声学特性和声波在海水介质中的传播时所遵循的规律,及其对水声设备工作的影响。
水声信道(声信息的传输通道)复杂、多变的,声传播现象也是复杂、多变的。
水声工程:
包括水下声系统和水声技术两方面。
水下声系统:
是水声换能器及基阵,实现水下声能与电能之间的转换,研究内容主要为换能器材
料、结构、制作及其辐射、接收特性等。
《水声换能器及基阵》,周福洪编著
水声技术:
广义一一声波在水中完成某种职能的有关技术。
狭义一一水声信号处理、显示技术,主要研究声信号在水中传播时的特性和背景干扰
(噪声和混响)的统计特性,在此基础上设计最佳时、空处理方案,实现信号检测,并完成目标参数估计和目标识别。
《水声信号处理基础》,钱秋珊、陆根源编
1.3水声学的应用
水声的军事应用:
水雷引爆:
压敏水雷、音响水雷
制导鱼雷:
主、被动制导
舰载声纳:
A/N-SQS-26
拖曳声纳:
A/N-SQS-35
拖曳线阵以及声纳浮标等
水声的民用:
测深:
常规测深仪、底层剖面仪、旁视声纳
多普勒测速仪
鱼探仪:
前视主动声纳
助鱼设备:
计数、诱鱼
助潜设备:
手提式小型的定位声纳
定位标志:
新标、应答器
通讯与遥测
控制:
声释放器、油井井口流量控制
声学流量级、波高传感器
1・4内容安排
以声纳方程为主线,对它的每个参数从水声物理的角度进行阐述:
绪论:
声纳方程
声学基础知识:
海洋声学特性:
海洋中的声传播理论:
典型传播条件下的声场:
声波在目标上的反射和散射:
海洋中的混响:
水下噪声:
声传播起伏:
教材:
刘伯胜编《水声学原理》
1.5声纳及其工作方式
声纳(Sonar—SoundNavigationandRanging):
利用水下声信息进行探测、识别、定位、导航和通讯的系统。
按照工作方式分类:
主动声纳和被动声纳
主动声纳信息流程:
发射系统发射携带一定信息的声信号(发射信号),在海水中传播时如
遇到障碍物(潜艇、水雷、鱼雷、冰山、暗礁,统称声纳目标),产生回声信号;在某一方向上
的回声信号传到接收基阵,并将其转换为电信号,经处理器处理后送到判决器,根据预先确定的原则进行判决,最后显示判决结果。
被动声纳(噪音声纳站)信息流程:
被动声纳通过接收被探测目标(声源部分)如鱼雷、潜
艇等的辐射噪声,来实现水下目标探测。
判茯'显示
■——
楼收阵
1.6声纳参数
主、被动声纳工作信息流程的基本组成:
声信号传播介质(海水)、被探测目标和声纳设备。
声纳参数:
将影响声纳设备工作的因素称为声纳参数。
1声源级SL
声源级SL用来描述主动声纳所发射的声信号的强弱(反应发射器辐射声功率大小),定义为:
ISL=10lg—
式中,I为发射器声轴方向上离声源声中心1米处的声强,I。
为参考声强(均方根声压为1微帕
的平面波的声强),10=0.6710J8W/m2。
为了提高主动声纳的作用距离,它的发射器做成具有一定的发射指向性,如右图所示。
解释原因:
它可以提高辐射信号的强度,相应也
提高回声信号强度,增加接收信号的信噪比,从而增
加声纳的作用距离。
发射指向性指数DIt:
DI=ioig
IND
式中,Id为指向性发射器在声轴上测得的声强度;Ind为无指向性发射器辐射的声强度。
DTt含义:
在相同距离上,指向性发射器声轴上声级高出无指向性发射器辐射声场声级的分贝数;
DTt越大,声能在声轴方向集中的程度越高;就有利于增加声纳的作用距离。
声源级与声功率的关系:
假设介质无声吸收,声源为点声源,辐射声功率为Pa(W),距声源声中心1米处声强度为:
I心=Pa/4兀W/m2)
则可得无指向性声源辐射声功率与声源级的关系:
SL=10lgPa170.77
有指向性声源辐射声功率与声源级的关系:
SLHOIgPa170.77DIT
常识:
船用声纳Pa为几百瓦~几千瓦,DIT为10~30dB,SL约为210~240dB。
2、传播损失TL
由于海水介质本身的声吸收、声传播过程波阵面的扩展及海水中各种不均匀的散射等原因,声波的声强度逐渐减弱。
传播损失TL定量描述声波传播一定距离后声强度的衰减变化,它定义为:
式中,11是离声源声中心1米处的声强度;Ir离声源声中心r米处的声强度。
3、目标强度TS
目标反射本领差异:
在同样入射声波的照射下,不同目标的回波是不一样的。
它除了与入射声波特性(频率、波阵面形状)有关,还与目标的特性(几何形状、材料等)有关。
目标强度TS定量描述目标反射本领的大小,它定义为:
TS=10lg
Ir
Ii
式中,Ii是目标处入射声波的强度;Ir离目标声中心1米处的回波强度。
4、海洋环境噪声级NL
海洋环境噪声是有海洋中大量的各种各样的噪声源发出的声波构成的,背景干扰。
环境噪声级NL是度量环境噪声强弱的量,它定义为:
它是声纳设备的一种
NL=10lg
I0
式中,In是测量带宽内(或1Hz频带内)的噪声强度;I。
为参考声强度。
5、等效平面波混响级RL
主动声纳的背景干扰:
环境噪声和混响;一般环境噪声是平稳的和各向同性的,而混响是非平稳的和非各向同性的。
等效平面波混响级RL定量描述混响干扰的强弱,它就是利用平面波的声级来度量混响场的强弱:
强度已知的平面波轴向入射到水听器上,水听器输出电压值;将水听器移置于混响场中,声轴指向目标,水听器输出电压值。
6、接收指向性指数DI
接收换能器的接收指向性指数DI定义为:
无指向性水听器产生的噪声功率DI=10lg指向性水听器产生的噪声功率
其中,指向性水听器的轴向灵敏度等于无指向性水听器的灵敏度。
设水听器的灵敏度为单位值,噪声场为各向同性的,单位立体角内的噪声功率为性水听器产生的均方电压为:
RN=mIjdl】=4:
mIi
式中,m为比例常数;是元立体角。
指向性水听器产生的均方电压为:
RD=m」ib二,‘=m\id'J
4H4Jt
DI=10lgRN=10lgrd
仲时旧丿
Ii,无指向
DI为:
其中,b^,是归一化的声束图函数,二、是空间方位角。
则接收指向性指数
注意:
参数DI只对各向同性噪声场中的平面波信号(是完全相关信号)有意义;否则需用阵增益来代替DI。
对于几何形状简单的换能器阵,可用阵尺寸来表示它的DI值。
型式
声束图函数
DI=10lg
长度为L冷入的连续线阵
sin5L/人)si"1](兀L忍pin日'
2LT
无限障板上直径为D冷九的
活塞
n"〕2(兀D^Sin日J
亦
Z)
间距为d的n个等间隔基兀构成的线阵
sin(nwdsin6/X)"l
』sin(兀dsin日'九)」
n
1+2^(n-P)sin(2Prd,2)n厲2MdJ丸
.sin(2兀dsin日「九”』sin(兀dsin日丸)」
2
双基元阵,间距为d,n=2
Lsin(2«d/丸)
1+:
2创丸
7、检测阈DT
声纳设备接收器接收和输出信号:
声纳信号和背景噪声,两部分比值一接收带宽内的信号功率或均方声压与1HZ带宽内(或接收带宽)噪声功率或均方电压,它影响设备的工作质量,比值越高,设备就能正常工作,“判决”就越可信。
检测阈DT是设备刚好能正常工作所需的处理器输入端的信噪比值,它定义为:
DT=10lg
刚好完成某种职能时的信号功率
水听器输出端上的噪声~~功率
注意:
对于同种职能的声纳设备,检测阈值较低的设备,其处理能力强,性能也好。
1.7声纳方程
声纳方程:
综合考虑水声所特有的各种现象和效应对声纳设备的设计和应用所产生影响的关系式。
它将海水介质、声纳目标和声纳设备的作用联系在一起。
1、基本考虑
声纳方程的基本原则:
信号级-背景干扰级=检测阈(刚好完成预定职能)背景干扰级的含义:
设备工作带宽内部分背景噪声才起干扰作用。
2、主动声纳方程
收发合置的主动声纳信号强度变化如下图:
回声信号级(信号级):
回声到达接收阵的声级SL-2TL+TS
背景干扰级:
NL-DI(接收阵接收指向性指数压低背景噪声)注意:
换能器声轴指向目标,回声信号不会被接收指向性指数压低。
处理器处的电信号的信噪比:
(SL-2TL+TS)-(NL-DI)
主动声纳方程(噪声背景):
(SL-2TL+TS)-(NL-DI)=DT
2TL表示;适用于
注意:
适用于收发合置型声纳,对于收发分置声纳,往返传播损失不能简单用背景干扰为各向同性的环境噪声情况。
对于主动声纳,混响也是它的背景干扰,而混响是非各向同性的,当混响成为主要背景干扰,应使用等效平面波混响级RL替代NL-DI,主动声纳方程为(混响背景):
SL-2TL+TS-RL=DT
3、被动声纳方程
与主动声纳相比,被动声纳简单:
噪声源发出的噪声直接由噪声源传播至接收换能器;
噪声源发出的噪声不经目标反射,即无TS;
背景干扰为环境噪声。
被动声纳方程:
|(SL-TL)-(NL-DI)=DT式中,SL为噪声源辐射噪声的声源级。
1・8组合声纳参数
组合声纳参数:
几个声纳参数的组合量,它具有明确的物理含义。
回声信号级:
SL-2TL+TS――加到主动声纳接收换能器上的回声信号的声级;
噪声掩蔽级:
NL-DI+DT――工作在噪声干扰中的声纳设备正常工作所需的最低信号级;
混响掩蔽级:
RL+DT――工作在混响干扰中的声纳设备正常工作所需的最低信号级;回声余量:
SL-2TL+TS-(NL-DI+DT)――主动声纳回声级超过噪声掩蔽级的数量;优质因数:
|SL-(NL-DI+DT)――对于被动声纳,该量规定最大允许单程传播损失;对于主动声纳,当TS=0时,该量规定了最大允许双程传播损失;
品质因数:
SL-(NL-DI)――声纳接收换能器测得的声源级与噪声级之差
1.9声纳方程的应用及其限制
1声纳方程的应用
基本用途:
声纳设备性能预报:
已知设备特点和若干参数,对其它声纳参数进行估计(例如估计最大传
播损失一一优质因数)
声纳设备设计:
预先规定设计设备的职能及各项战术技术指标,根据声纳方程综合评价各参数的影响,对参数合理选取和设备最佳设计(例如频率的选取一一DI、TL)。
2、声纳方程的瞬态形式
声纳方程是用声强度来描述的,而声强度是声能流在某一时间间隔内的平均值:
I-pudt
T0
当声源发射声信号是很短的脉冲信号,或者由于介质的传播效应、目标反射的物理效应,接收到回声信号波形会产生严重畸变,上式平均值会得到不确定的结果,上式不再适用。
作为一种常用的近似,在时间T内对声波的能流密度E求平均而得声强:
I=ETEpudt
p
对于长脉冲声纳,T为发射脉冲宽度,回波脉冲宽度也近似等于此值;对于短脉冲声纳,T一般
不确定,回声宽度与发射宽度相差甚大。
短脉冲信号声纳方程(R.J.Urick):
SLFOIgETOIge
式中,E是离声源单位距离处的声能流密度;e是回声脉冲宽度:
式中,.0是发射脉冲宽度;.t是声传播多途效应引起的信号展宽;-m目标回波引起的展宽。
回声宽度各部分典型值
项目
内容
典型值:
ms
在近距离上发射脉冲宽度
爆炸:
0.1
声纳:
100
Tt
由多途效应引起的宽度
浅海:
1
深海:
100
巧m
由潜艇目标引起的宽度
正横方向:
10
首尾方向:
100
3、回声级、噪声级和混响级与距离的关系
主动声纳的背景干扰包括混响和噪声,它们对声纳设备工作的影响不同,应用声纳方程需要确定背景干扰类型。
根据声纳适用场合,画出回声级、混响掩蔽级和噪声掩蔽级随距离的变化曲线,并由此合理地选用声纳方程。
回声和混响都是随距离而衰减的,而噪声保持不变。
一般,回声曲线随距离下降比混响掩蔽级曲线要快,二者相交于混响限制距离尺处(由
混响声纳方程确定)。
而回声曲线与噪声掩蔽级相交于噪声限制距离Rn处(由噪声声纳方程确
定)。
如果Rr:
:
Rn,而声纳设备正常工作的距离R■Rr,因此声纳作用距离受混响限制(噪声掩蔽级I),选择混响声纳方程;如果RnvRr,而声纳设备正常工作的距离RcRn,因此声纳作用距离受噪声限制(噪声掩蔽级II),选择噪声声纳方程。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程 声学 教案 DOC