秋湘教版七年级上册数学第1章测试题.docx
- 文档编号:29736131
- 上传时间:2023-07-26
- 格式:DOCX
- 页数:17
- 大小:62.52KB
秋湘教版七年级上册数学第1章测试题.docx
《秋湘教版七年级上册数学第1章测试题.docx》由会员分享,可在线阅读,更多相关《秋湘教版七年级上册数学第1章测试题.docx(17页珍藏版)》请在冰豆网上搜索。
秋湘教版七年级上册数学第1章测试题
第1章测试题
一、选择题(本大题10小题,每小题3分,共30分)
1.(3分)在1,0,2,﹣3这四个数中,最大的数是()
A.1B.0C.2D.﹣3
2.(3分)2的相反数是()
A.
B.
C.﹣2D.2
3.(3分)﹣5的绝对值是()
A.5B.﹣5C.
D.﹣
4.(3分)﹣2的倒数是()
A.2B.﹣2C.
D.﹣
5.(3分)下列说法正确的是()
A.带正号的数是正数,带负号的数是负数
B.一个数的相反数,不是正数,就是负数
C.倒数等于本身的数有2个
D.零除以任何数等于零
6.(3分)在有理数中,绝对值等于它本身的数有()
A.1个B.2个C.3个D.无穷多个
7.(3分)比﹣2大3的数是()
A.1B.﹣1C.﹣5D.﹣6
8.(3分)下列算式正确的是()
A.3﹣(﹣3)=6B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6D.﹣32=9
9.(3分)据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()
A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元
10.(3分)近似数2.7×103是精确到()
A.十分位B.个位C.百位D.千位
二、填空题(本大题6小题,每小题4分,共24分)
11.(4分)如果温度上升3℃记作+3℃,那么下降3℃记作.
12.(4分)已知|a|=4,那么a=.
13.(4分)在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.
14.(4分)比较大小:
3223.
15.(4分)若(a﹣1)2+|b+2|=0,那么a+b=.
16.(4分)观察下列依次排列的一列数:
﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为.
三、解答题
(一)(本大题3小题,每小题6分,共18分)
17.(6分)把下列各数在数轴上表示出来,并用“>“号连结起来.
﹣3,﹣1.5,﹣1,2.5,4.
18.(6分)﹣8﹣6+22﹣9.
19.(6分)计算:
﹣8÷(﹣2)+4×(﹣5).
四、解答题
(二)(本大题3小题,每小题7分,共21分)
20.(7分)小强有5张卡片写着不同的数字的卡片:
他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?
最大的乘积是多少吗?
21.(7分)计算:
(﹣
+
﹣
)×(﹣12).
22.(7分)计算:
﹣22+3×(﹣1)4﹣(﹣4)×2.
五、解答题(三)(本大题3小题,每小题9分,共27分)
23.(9分)若|a|=5,|b|=3,求a+b的值.
24.(9分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:
+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10
(1)这10名同学中最高分数是多少?
最低分数是多少?
(2)这10名同学的平均成绩是多少.
25.(9分)一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:
+7表示汽车向北行驶7千米),当天行驶记录如下:
+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:
千米)问:
(1)B地在A地的何方,相距多少千米?
(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?
参考答案:
一、选择题(本大题10小题,每小题3分,共30分)
1.(3分)在1,0,2,﹣3这四个数中,最大的数是()
A.1B.0C.2D.﹣3
【考点】有理数大小比较.
【分析】根据正数大于0,0大于负数,可得答案.
【解答】解:
﹣3<0<1<2,
故选:
C.
【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.
2.(3分)2的相反数是()
A.
B.
C.﹣2D.2
【考点】相反数.
【分析】根据相反数的概念解答即可.
【解答】解:
2的相反数是﹣2,
故选:
C.
【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.
3.(3分)﹣5的绝对值是()
A.5B.﹣5C.
D.﹣
【考点】绝对值.
【分析】根据绝对值的性质求解.
【解答】解:
根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.
【点评】此题主要考查的是绝对值的性质:
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
4.(3分)﹣2的倒数是()
A.2B.﹣2C.
D.﹣
【考点】倒数.
【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.
【解答】解:
∵﹣2×(
)=1,
∴﹣2的倒数是﹣
.
故选D.
【点评】主要考查倒数的概念及性质.倒数的定义:
若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.
5.(3分)下列说法正确的是()
A.带正号的数是正数,带负号的数是负数
B.一个数的相反数,不是正数,就是负数
C.倒数等于本身的数有2个
D.零除以任何数等于零
【考点】有理数.
【分析】利用有理数的定义判断即可得到结果.
【解答】解:
A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;
B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;
C、倒数等于本身的数有2个,是1和﹣1,正确;
D、零除以任何数(0除外)等于零,故错误;
故选:
C.
【点评】此题考查了有理数,熟练掌握有理数的定义是解本题的关键.
6.(3分))在有理数中,绝对值等于它本身的数有()
A.1个B.2个C.3个D.无穷多个
【考点】绝对值.
【分析】根据绝对值的意义求解.
【解答】解:
在有理数中,绝对值等于它本身的数有0和所有正数.
故选D.
【点评】本题考查了绝对值:
若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.
7.(3分)比﹣2大3的数是()
A.1B.﹣1C.﹣5D.﹣6
【考点】有理数的加法.
【分析】先根据题意列出算式,然后利用加法法则计算即可.
【解答】解:
﹣2+3=1.
故选:
A.
【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.
8.(3分)下列算式正确的是()
A.3﹣(﹣3)=6B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6D.﹣32=9
【考点】有理数的乘方;相反数;有理数的减法.
【分析】根据有理数的减法和有理数的乘方,即可解答.
【解答】解:
A、3﹣(﹣3)=6,正确;
B、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;
C、(﹣3)2=9,故本选项错误;
D、﹣32=﹣9,故本选项错误;
故选:
A.
【点评】本题考查了有理数的减法和有理数的乘方,解决本题的关键是熟记有理数的乘方和有理数的减法.
9.(3分)据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()
A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元
【考点】科学记数法—表示较大的数.
【分析】根据科学记数法的表示方法:
a×10n,可得答案.
【解答】解:
1.36万亿元,用科学记数法表示为1.36×1012元,
故选:
B.
【点评】本题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n是整数数位减1.
10.(3分)近似数2.7×103是精确到()
A.十分位B.个位C.百位D.千位
【考点】近似数和有效数字.
【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.
【解答】解:
∵2.7×103=2700,
∴近似数2.7×103精确到百位.
故选C.
【点评】本题考查了近似数和有效数字:
经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.
二、填空题(本大题6小题,每小题4分,共24分)
11.(4分)如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.
【考点】正数和负数.
【分析】此题主要用正负数来表示具有意义相反的两种量:
上升记为正,则下降就记为负.
【解答】解:
∵温度上升3℃记作+3℃,
∴下降3℃记作﹣3℃.
故答案为:
﹣3℃.
【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.
12.(4分)已知|a|=4,那么a=±4.
【考点】绝对值.
【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.
【解答】解:
∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.
【点评】绝对值规律总结:
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.
13.(4分)在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1.
【考点】数轴.
【专题】探究型.
【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.
【解答】
解:
当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;
当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.
故答案为:
﹣5或﹣1.
【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.
14.(4分)比较大小:
32>23.
【考点】有理数的乘方;有理数大小比较.
【专题】计算题.
【分析】分别计算32和23,再比较大小即可.
【解答】解:
∵32=9,23=8,
∴9>8,
即32>23.
故答案为:
>.
【点评】本题考查了有理数的乘方以及有理数的大小比较,是基础知识要熟练掌握.
15.(4分)若(a﹣1)2+|b+2|=0,那么a+b=﹣1.
【考点】非负数的性质:
偶次方;非负数的性质:
绝对值.
【分析】根据非负数的性质列式求出a、b,然后相加即可得解.
【解答】解:
根据题意得,a﹣1=0,b+2=0,
解得a=1,b=﹣2,
所以,a+b=1+(﹣2)=﹣1.
故答案为:
﹣1.
【点评】本题考查了非负数的性质:
几个非负数的和为0时,这几个非负数都为0.
16.(4分)观察下列依次排列的一列数:
﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20.
【考点】规律型:
数字的变化类.
【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.
【解答】解:
∵﹣2,4,﹣6,8,﹣10…,
∴第10个数是正数数,且绝对值为2×10=20,
∴第10个数是20,
故答案为:
20.
【点评】本题是对数字变化规律的考查,比较简单,难点在于从绝对值和符号两个部分考虑求解.
三、解答题
(一)(本大题3小题,每小题6分,共18分)
17.(6分)把下列各数在数轴上表示出来,并用“>“号连结起来.
﹣3,﹣1.5,﹣1,2.5,4.
【考点】有理数大小比较;数轴.
【分析】先在数轴上表示各个数,再比较即可.
【解答】解:
4>2.5>﹣1>﹣1.5>﹣3.
【点评】本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:
在数轴上表示各个数,右边的数总比左边的数大.
18.(6分)﹣8﹣6+22﹣9
【考点】有理数的加减混合运算.
【分析】直接进行有理数的加减运算.
【解答】解:
原式=﹣23+22=﹣1.
【点评】本题考查有理数的运算,属于基础题,注意运算的顺序是关键.
19.(6分)计算:
﹣8÷(﹣2)+4×(﹣5).
【考点】有理数的混合运算.
【专题】计算题;实数.
【分析】原式先计算乘除运算,再计算加减运算即可得到结果.
【解答】解:
原式=4﹣20=﹣16,
故答案为:
﹣16
【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
四、解答题
(二)(本大题3小题,每小题7分,共21分)
20.(7分)小强有5张卡片写着不同的数字的卡片:
他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?
最大的乘积是多少吗?
【考点】规律型:
数字的变化类.
【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.
【解答】解:
抽取﹣3和﹣8.
最大乘积为(﹣3)×(﹣8)=24.
【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.
21.(7分)计算:
(﹣
+
﹣
)×(﹣12).
【考点】有理数的混合运算.
【专题】计算题.
【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.
【解答】解:
(﹣
+
﹣
)×(﹣12)
=(﹣
)×(﹣12)+
×(﹣12)﹣
×(﹣12)
=2﹣9+5
=﹣2
【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:
先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.
22.(7分)计算:
﹣22+3×(﹣1)4﹣(﹣4)×2.
【考点】有理数的混合运算.
【专题】计算题;实数.
【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.
【解答】解:
原式=﹣4+3+8=7.
【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
五、解答题(三)(本大题3小题,每小题9分,共27分)
23.(9分)若|a|=5,|b|=3,求a+b的值.
【考点】有理数的加法;绝对值.
【分析】|a|=5,则a=±5,同理b=±3,则求a+b的值就应分几种情况讨论.
【解答】解:
∵|a|=5,
∴a=±5,
同理b=±3.
当a=5,b=3时,a+b=8;
当a=5,b=﹣3时,a+b=2;
当a=﹣5,b=3时,a+b=﹣2;
当a=﹣5,b=﹣3时,a+b=﹣8.
【点评】正确地进行讨论是本题解决的关键.规律总结:
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
24.(9分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:
+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10
(1)这10名同学中最高分数是多少?
最低分数是多少?
(2)这10名同学的平均成绩是多少.
【考点】正数和负数.
【分析】
(1)根据正负数的意义解答即可;
(2)求出所有记录的和的平均数,再加上基准分即可.
【解答】解:
(1)最高分为:
80+12=92分,
最低分为:
80﹣10=70分;
(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10
=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8
=31﹣31
=0,
所以,10名同学的平均成绩80+0=80分.
【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
25.(9分)一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:
+7表示汽车向北行驶7千米),当天行驶记录如下:
+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:
千米)问:
(1)B地在A地的何方,相距多少千米?
(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?
【考点】正数和负数.
【专题】应用题.
【分析】
(1)把当天记录相加,然后根据正数和负数的规定解答即可;
(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.
【解答】解:
(1)18﹣9+7﹣14﹣6+12﹣6+8
=45﹣35
=10,
所以,B地在A地北方10千米;
(2)18+9+7+14+6+12+6+8=80千米
80×0.35=28升.
【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 秋湘教版七 年级 上册 数学 测试