数据的收集与整理易错题汇编及答案解析.docx
- 文档编号:29688153
- 上传时间:2023-07-26
- 格式:DOCX
- 页数:18
- 大小:196.22KB
数据的收集与整理易错题汇编及答案解析.docx
《数据的收集与整理易错题汇编及答案解析.docx》由会员分享,可在线阅读,更多相关《数据的收集与整理易错题汇编及答案解析.docx(18页珍藏版)》请在冰豆网上搜索。
数据的收集与整理易错题汇编及答案解析
数据的收集与整理易错题汇编及答案解析
一、选择题
1.要反映台州市某一周每天的最高气温的变化趋势,宜采用()
A.条形统计图B.扇形统计图
C.折线统计图D.频数分布统计图
【答案】C
【解析】
根据题意,得
要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.
故选C.
2.中华汉字,源远流长.某校为了传承中华优秀传统文化,组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,学校随机抽取了其中200名学生的成绩进行统计分析,下列说法正确的是( )
A.这3000名学生的“汉字听写”大赛成绩的全体是总体B.每个学生是个体
C.200名学生是总体的一个样本D.样本容量是3000
【答案】A
【解析】
【分析】
根据总体、个体、样本、样本容量的定义即可判断.
【详解】
A.这3000名学生的“汉字听写”大赛成绩的全体是总体,故A选项正确;
B.每个学生的大赛的成绩是个体,故B选项错误;
C.200名学生的大赛的成绩是总体的一个样本,故C选项错误;
D.样本容量是200,故D选项错误.
故答案选:
A.
【点睛】
本题考查的知识点是总体、个体、样本、样本容量,解题的关键是熟练的掌握总体、个体、样本、样本容量.
3.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是( )
A.个体B.总体C.样本容量D.总体的样本
【答案】C
【解析】
【分析】
根据总体:
所要考察的对象的全体叫做总体;样本:
从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:
一个样本包括的个体数量叫做样本容量可得答案.
【详解】
为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是样本容量,
故选:
C.
【点睛】
此题主要考查了总体、个体、样本、样本容量,关键是掌握定义.
4.为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:
元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是( )
①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;
②估计平均每人乘坐地铁的月均花费的不低于60元;
③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.
A.①②B.①③C.②③D.①②③
【答案】D
【解析】
【分析】
①求出80元以上的人数,能确定可以判断此结论;
②根据图中信息,可得大多数人乘坐地铁的月均花费在60−120之间,据此可得平均每人乘坐地铁的月均花费的范围;
③该市1000人中,30%左右的人有300人,根据图形可得乘坐地铁的月均花费达到100元的人有300人可以享受折扣.
【详解】
解:
①超过月均花费80元的人数为:
200+100+80+50+25+25+15+5=500,小明乘坐地铁的月均花费是75元,
所调查的1000人中至少有一半以上的人月均花费超过小明;故①正确;
②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,
估计平均每人乘坐地铁的月均花费的范围是60~120,
所以估计平均每人乘坐地铁的月均花费的不低于60元,此结论正确;
③∵1000×20%=200,而80+50+25+25+15+5=200,
∴乘坐地铁的月均花费达到120元的人可以享受折扣.此结论正确;
综上,正确的结论为①②③,
故选:
D.
【点睛】
本题主要考查了频数分布直方图及用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
5.某校文学社成员的年龄分布如下表:
年龄岁
12
13
14
15
频数
6
9
a
15﹣a
对于不同的正整数,下列关于年龄的统计量不会发生改变的是( )
A.平均数B.众数C.方差D.中位数
【答案】D
【解析】
【分析】
由频数分布表可知后两组的频数和为15,即可得知总人数,结合前两组的频数知第15、16个数据的平均数,可得答案.
【详解】
解:
∵14岁和15岁的频数之和为15﹣a+a=15,
∴频数之和为6+9+15=30,
则这组数据的中位数为第15、16个数据的平均数,即
=13.5,
∴对于不同的正整数a,中位数不会发生改变,
故选:
D.
【点睛】
此题考查频数(率)分布表,加权平均数,中位数,众数,方差,看懂图中数据是解题关键
6.下列调查中,调查方式选择合理的是( )
A.为了解襄阳市初中每天锻炼所用时间,选择全面调查
B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查
C.为了解神舟飞船设备零件的质量情况,选择抽样调查
D.为了解一批节能灯的使用寿命,选择抽样调查
【答案】D
【解析】
【分析】
【详解】
A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;
B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;
C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;
D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;
故选D.
7.七年级
(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是()
A.45°B.60°
C.72°D.120°
【答案】C
【解析】
试题解析:
由题意可得,
第一小组对应的圆心角度数是:
×360°=72°,
故选C.
8.下列调查中,最适合采用普查方式的是( )
A.对太原市民知晓“中国梦”内涵情况的调查
B.对全班同学1分钟仰卧起坐成绩的调查
C.对2018年央视春节联欢晚会收视率的调查
D.对2017年全国快递包裹产生的包装垃圾数量的调查
【答案】B
【解析】分析:
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
详解:
A、调查范围广适合抽样调查,故A不符合题意;
B、适合普查,故B符合题意;
C、调查范围广适合抽样调查,故C不符合题意;
D、调查范围广适合抽样调查,故D不符合题意;
故选:
B.
点睛:
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
9.某牧场为估计该地区山羊的只数,先捕捉20只山羊给它们分别做上标志,然后放回,待有标志的山羊完全混合于山羊群后,第二次捕捉80只山羊,发现其中2只有标志,从而估计该地区有山羊()
A.400只B.600只C.800只D.1000只
【答案】C
【解析】
【分析】
捕捉80只山羊,发现其中2只有标志,说明有标志的占到
,而有标记的共有20只,根据所占比例列式计算即可.
【详解】
解:
该地区有山羊有:
20÷
=800(只);
故选:
C.
【点睛】
本题考查了用样本估计总体的思想,熟练掌握是解题的关键.
10.在某校选拔毕业晚会主持人的决赛中,参与投票的每名学生必须从进入决赛的四名选手中选1名,且只能选1名,根据投票结果,绘制了如下两幅不完整的统计图,则选手B的得票为()
A.300B.90C.75D.85
【答案】C
【解析】
【分析】
先算出总票数,再算出B,D的票数和,再求出B的票数.
【详解】
B的得票为:
人
故选:
C
【点睛】
考核知识点:
从条形图和扇形图获取信息.
11.要反映某市某一周每天的最高气温的变化趋势,宜采用( )
A.条形统计图B.扇形统计图
C.折线统计图D.以上均可
【答案】C
【解析】
【分析】
根据统计图的特点进行分析可得:
扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此即可解答.
【详解】
根据统计图的特点,要反映某市某一周每天的最高气温的变化趋势,应采用折线统计图.
故选C.
【点睛】
本题考查了折线统计图的特点,熟知折线统计图表示的是事物的变化情况是解决问题的关键.
12.如图是某班一次数学测试成绩的频数直方图,则成绩在69.5~89.5分范围内的学生共有( )
A.24人B.10人C.14人D.29人
【答案】A
【解析】
【分析】
根据直方图给出的数据,把成绩在
分范围内的学生人数相加即可得出答案.
【详解】
解:
成绩在
分范围内的学生共有:
人
,
故选A.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
13.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下列说法中错误的一项()
A.图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量.
B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半.
C.图2显示意大利当前的治愈率高于西班牙.
D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率
【答案】C
【解析】
【分析】
A中,读图1,将数据代入公式验证;B中,直接读图2比较即可;C中,治愈率=治愈人数÷患病人数,需要计算分析;D中,直接读图3可得出
【详解】
A中,现有确诊增加量为:
-297,累计确诊增加量为:
114,治愈增加量为:
405,死亡增加量为:
6,代入A中的公式,成立,A正确;
B中,美国累计确诊人数为:
104661,百万人口确诊:
318,德国累计确诊人数为:
50871,百万人口确诊:
625,美国累计确诊人数约是德国的2倍,正确.德国百万人口确诊数约是美国的2倍,正确.故B正确.;
C中,意大利治愈人数为:
10950,患病人数为:
86498,治愈率为0.127;西班牙治愈人数为:
9357,患病人数为:
65719,治愈率为:
0.142.故西班牙治愈率更高,C错误;
D中,从图3知,从3月16日开始,海外的病死率曲线比中国高,即高出中国,D正确
故选:
C
【点睛】
本题考查图表数据的分析能力,在解题过程中需要注意,有些数据是需要计算分析的,如治愈率,切不可仅观察表面数据
14.如图是小明所在学校八年级各班学生人数分布图,则该校八年级学生总数为()
A.180人B.200人C.210人D.220人
【答案】B
【解析】
【分析】
根据扇形统计图先求出5班所占的百分比,再用5班的人数除以5班所占的百分比即可得出答案.
【详解】
解:
根据题意得:
42÷(1-20%-18%-21%-20%)=200(人),
答:
该校八年级学生总数为200人;
故选B.
【点睛】
本题考查扇形统计图,掌握频数、频率和总数之间的关系是解题关键.
15.嘉嘉将100个数据分成①~⑧组,如下表所示,则第⑤组的频率()
组号
①
②
③
④
⑤
⑥
⑦
⑧
频数
3
8
15
22
18
14
9
A.11B.12C.0.11D.0.12
【答案】C
【解析】
【分析】
首先根据总数与表格的数据求出第⑤组的频数,由此进一步求出相应的频率即可.
【详解】
由题意得:
第⑤组的频数为:
,
∴其频率为:
,
故选:
C.
【点睛】
本题主要考查了频率的计算,熟练掌握相关概念是解题关键.
16.为了了解某地区七年级学生每天体育锻炼的时间,要进行抽样调查.以下是几个主要步骤:
①随机选择该地区一部分七年级学生完成调查问卷:
②设计调查问卷:
③用样本估计总体:
④整理数据:
⑤分析数据.正确的顺序是()
A.②①③④B.②①④③⑤C.①②④⑤③D.②①④⑤③
【答案】D
【解析】
【分析】
直接利用抽样调查收集数据的过程与方法分析排序即可.
【详解】
了解某地区七年级学生每天体育锻炼的时间所要经历的步骤顺序为:
②设计调查问卷、①随机选择该地区一部分七年级学生完成调查问卷、④整理数据、⑤分析数据、③用样本估计总体,
则正确顺序为:
②①④⑤③,
故选:
D.
17.某中学篮球队12名队员的年龄如表:
年龄(岁)
13
14
15
16
人数
1
5
4
2
关于这12名队员年龄的数据,下列说法正确的是( )
A.中位数是14.5B.年龄小于15岁的频率是
C.众数是5D.平均数是14.8
【答案】A
【解析】
【分析】
根据表中数据,求出这组数据的众数、频率、中位数和平均数即可.
【详解】
解:
A、中位数为第6、7个数的平均数,为
=14.5,此选项正确;
B、年龄小于15岁的频率是
,此选项错误;
C、14岁出现次数最多,即众数为14,此选项错误;
D、平均数为:
,此选项错误;
【点睛】
本题考查了众数、中位数、平均数与频率的计算问题,是基础题.解题的关键是掌握众数、中位数、平均数与频率的定义进行解题.
18.下列关于统计与概率的知识说法正确的是( )
A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件
B.检测100只灯泡的质量情况适宜采用抽样调查
C.了解北京市人均月收入的大致情况,适宜采用全面普查
D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数
【答案】B
【解析】
【分析】
根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.
【详解】
解:
A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;
B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;
C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;
D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;
故选B.
【点睛】
本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.
19.为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()
A.总体B.样本C.个体D.样本容量
【答案】B
【解析】
【分析】
根据总体、个体、样本、样本容量的定义逐个判断即可.
【详解】
解:
抽出的500名考生的数学成绩是样本,
故选B.
【点睛】
本题考查了总体、个体、样本、样本容量等知识点,能熟记总体、个体、样本、样本容量的定义是解此题的关键.
20.某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:
万人次)的数据并绘制了统计图如下:
根据统计图提供的信息,下列推断不合理的是()
A.2017年至2019年,年接待旅游量逐年增加
B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份
C.2019年的月接待旅游量的平均值超过300万人次
D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳
【答案】D
【解析】
【分析】
根据折线图,逐项判断即可得答案.
【详解】
由折线图可知:
A.2017年至2019年,年接待旅游量逐年增加,正确,故该选项不符合题意,
B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份,正确,故该选项不符合题意,
C.2019年的月接待旅游量的平均值超过300万人次,正确,故该选项不符合题意,
D.2017年至2019年,各年1月至6月的折线相对于7月至12月比较平缓,即波动性更小,变化比较平稳,故该选项错误,符合题意,
故选:
D.
【点睛】
本题考查频率分布折线图,正确理解图中信息是解题关键.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 收集 整理 易错题 汇编 答案 解析