高考数学一轮复习第9章统计统计案例第1讲随机抽样学案.docx
- 文档编号:29657303
- 上传时间:2023-07-25
- 格式:DOCX
- 页数:15
- 大小:30.86KB
高考数学一轮复习第9章统计统计案例第1讲随机抽样学案.docx
《高考数学一轮复习第9章统计统计案例第1讲随机抽样学案.docx》由会员分享,可在线阅读,更多相关《高考数学一轮复习第9章统计统计案例第1讲随机抽样学案.docx(15页珍藏版)》请在冰豆网上搜索。
高考数学一轮复习第9章统计统计案例第1讲随机抽样学案
【2019最新】精选高考数学一轮复习第9章统计统计案例第1讲随机抽样学案
板块一 知识梳理·自主学习
[必备知识]
考点1 简单随机抽样
1.定义:
设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
2.最常用的简单随机抽样的方法:
抽签法和随机数法.
3.抽签法与随机数法的区别与联系
抽签法和随机数法都是简单随机抽样的方法,但是抽签法适合在总体和样本都较少,容易搅拌均匀时使用,而随机数法除了适合总体和样本都较少的情况外,还适用于总体较多但是需要的样本较少的情况,这时利用随机数法能够快速地完成抽样.
考点2 系统抽样的步骤
假设要从容量为N的总体中抽取容量为n的样本.
1.先将总体的N个个体编号.
2.确定分段间隔k,对编号进行分段,当是整数时,取k=.
3.在第1段用简单随机抽样确定第一个个体编号l(l≤k).
4.按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.
考点3 分层抽样
1.定义:
在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.
2.分层抽样的应用范围:
当总体是由差异明显的几个部分组成的,往往选用分层抽样.
[必会结论]
1.不论哪种抽样方法,总体中的每一个个体入样的概率是相同的.
2.系统抽样是等距抽样,入样个体的编号相差的整数倍.
3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘以抽样比.
[考点自测]
1.判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)简单随机抽样是一种不放回抽样.( )
(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( )
(3)系统抽样在起始部分抽样时采用简单随机抽样.( )
(4)要从1002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )
答案
(1)√
(2)× (3)√ (4)×
2.[2015·四川高考]某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )
A.抽签法B.系统抽样法
C.分层抽样法D.随机数法
答案 C
解析 最合理的抽样方法是分层抽样法,选C项.
3.[课本改编]2018年1月6日~8日衡水重点中学在毕业班进行了一次模拟考试,为了了解全年级1000名学生的考试成绩,从中随机抽取了100名学生的成绩单,下面说法正确的是( )
A.1000名学生是总体
B.每个学生是个体
C.1000名学生的成绩是一个个体
D.样本的容量是100
答案 D
解析 1000名学生的成绩是统计中的总体,每个学生的成绩是个体,被抽取的100名学生的成绩是一个样本,其样本的容量是100.
4.[2018·湖北模拟]甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.
答案 1800
解析 分层抽样中各层的抽样比相同.样本中甲设备生产的有50件,则乙设备生产的有30件.在4800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1800件.
5.[2018·人大附中段考]在一次抽样活动中,采用了系统抽样.若第1组中选中的为2号,第2组中选中的为7号,则第5组中选中的应为________号.
答案 22
解析 由题意知抽样间隔为7-2=5,所以第5组中选中的号码为2+(5-1)×5=22.
板块二 典例探究·考向突破
考向 随机抽样方法
例 1 [2018·陕西模拟]某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:
抽到了4名男生、6名女生,则下列命题正确的是( )
A.这次抽样可能采用的是简单随机抽样
B.这次抽样一定没有采用系统抽样
C.这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率
D.这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率
答案 A
解析 利用排除法求解.这次抽样可能采用的是简单随机抽样,A正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,B错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,C和D均错误.故选A.
触类旁通
应用简单随机抽样应注意的问题
(1)一个抽样试验能否用抽签法,关键看两点:
一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.
(2)在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.
【变式训练1】 用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数(下面摘取了随机数表中的第11行至第15行),根据下图,读出的第三个数是( )
18180792454417165809798386196206765003105523640505
26623897758416074499831146322420148588451093728871
23424064748297777781074532140832989407729385791075
52362819955092261197005676313880220253538660420453
37859435128339500830423407968854420687983585294839
A.841B.114C.014D.146
答案 B
解析 从第12行第5列的数开始向右读数,第一个的编号为389,下一个775,775大于499,故舍去,再下一个841(舍去),再下一个607(舍去),再下一个449,再下一个983(舍去),再下一个114,读出的第三个数是114.
考向 分层抽样
例 2 [2017·江苏高考]某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.
答案 18
解析 ∵==,
∴应从丙种型号的产品中抽取×300=18(件).
触类旁通
分层抽样的步骤
(1)将总体按一定标准分层;
(2)计算各层的个体数与总体数的比,按各层个体数占总体数的比确定各层应抽取的样本容量;
(3)在每一层进行抽样(可用简单随机抽样或系统抽样).
【变式训练2】 [2018·天津模拟]某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.
答案 60
解析 由分层抽样的特点可得应该从一年级本科生中抽取×300=60名学生.
考向 系统抽样
例 3 [2018·山东模拟]采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为( )
A.7B.9C.10D.15
答案 C
解析 抽样间隔为30,所以第k组被抽中的号码为9+30(k-1).令451≤9+30(k-1)≤750,15≤k≤25,k∈N*,∴做B卷的人数为10人.
本例中条件不变,求做问卷A的人数和做问卷C的人数.
解 令9+30(k-1)≤450,∴k≤15,又∵k∈N*.
∴做A卷人数为15人,做C卷的人数为32-10-15=7人.
触类旁通
系统抽样的特点及抽样技巧
(1)系统抽样的特点——机械抽样,又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.
(2)系统抽样时,如果总体中的个数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行.
【变式训练3】 将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )
A.26,16,8B.25,17,8C.25,16,9D.24,17,9
答案 B
解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300,得k≤,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得 核心规律 1.系统抽样的特点: 适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样. 2.分层抽样的特点: 适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样. 满分策略 系统抽样和分层抽样中的注意事项 (1)系统抽样最大的特点是“等距”,利用此特点可以很方便地判断一种抽样方法是否是系统抽样. (2)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠;为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同. 板块三 启智培优·破译高考 创新交汇系列7——分层抽样与概率相结合问题 [2018·银川检测]某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表: 学历 35岁以下 35~50岁 50岁以上 本科 80 30 20 研究生 x 20 y (1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1人学历为研究生的概率; (2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取1人,此人的年龄为50岁以上的概率为,求x,y的值. 解题视点 (1)根据分层抽样得到样本中的人员分布,列举所有等可能基本事件,求概率. (2)由概率列式求N,根据样本中各年龄段的抽样比相等,确定x,y的值. 解 (1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,设抽取学历为本科的人数为m,∴=,解得m=3. 抽取的样本中有研究生2人,本科生3人,分别记作S1,S2;B1,B2,B3. 从中任取2人的所有等可能基本事件共有10个: (S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B1,B3),(B2,B3), 其中至少有1人的学历为研究生的基本事件有7个: (S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2). ∴从中任取2人,至少有1人学历为研究生的概率为. (2)由题意,得=,解得N=78. ∴35~50岁中被抽取的人数为78-48-10=20, ∴==,解得x=40,y=5. 即x,y的值分别为40,5. 答题启示 分层抽样与概率结合的题目多与实际问题紧密联系,计算量和阅读量都比较大,且会有图表,求解时容易造成失误,平时需注意多训练此类型的题目. 跟踪训练 [2018·郑州质检]最新高考改革方案已在上海和浙江实施,某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下: 赞成改革 不赞成改革 无所谓 教师 120 y 40 学生 x z 130 在全体师生中随机抽取1名“赞成改革”的人是学生的概率为0.3,且z=2y. (1)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数各是多少? (2)在 (1)中所抽取的“不赞成改革”的人中,随机选出3人进行座谈,求至少有1名教师被选出的概率. 解 (1)由题意知=0.3,所以x=150,所以y+z=60, 因为z=2y,所以y=20,z=40, 则应抽取“不赞成改革”的教师人数为×20=2, 应抽取“不赞成改革”的学生人数为×40=4. (2)所抽取的“不赞成改革”的2名教师记为a,b,4名学生记为1,2,3,4,随机选出3人的不同选法有(a,b,1),(a,b,2),(a,b,3),(a,b,4),(a,1,2),(a,1,3),(a,1,4),(a,2,3),(a,2,4),(a,3,4),(b,1,2),(b,1,3),(b,1,4),(b,2,3),(b,2,4),(b,3,4),(1,2,3),(1,2,4),(1,3,4),(2,3,4),共20种, 至少有1名教师的选法有(a,b,1),(a,b,2),(a,b,3),(a,b,4),(a,1,2),(a,1,3),(a,1,4),(a,2,3),(a,2,4),(a,3,4),(b,1,2),(b,1,3),(b,1,4),(b,2,3),(b,2,4),(b,3,4),共16种, 故至少有1名教师被选出的概率P==. 板块四 模拟演练·提能增分 [A级 基础达标] 1.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( ) A.p1=p2 C.p1=p3 答案 D 解析 随机抽样包括: 简单随机抽样,系统抽样和分层抽样.随机抽样的特点就是每个个体被抽到的概率相等. 2.[2018·海口调研]某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( ) A.15B.18C.21D.22 答案 C 解析 系统抽样的抽取间隔为=6,若抽到的最小编号为3,则抽取到的最大编号为6×3+3=21.故选C. 3.[2018·青岛模拟]某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,现从中抽取一个容量为200的样本,则高中二年级被抽取的人数为( ) A.28B.32C.40D.64 答案 D 解析 由分层抽样的定义可知高中二年级被抽取的人数为×200=64.故选D. 4.福利彩票“双色球”中红色球的号码由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为( ) 4954435482173793237887352096438426349164 5724550688770474476721763350258392120676 A.23B.09C.02D.17 答案 C 解析 从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02. 5.某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为( ) A.800B.1000C.1200D.1500 答案 C 解析 因为a,b,c成等差数列,所以2b=a+c. 所以=b.所以第二车间抽取的产品数占抽样产品总数的.根据分层抽样的性质,可知第二车间生产的产品数占总数的,即为×3600=1200. 6.[2018·东北三校联考]某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=( ) A.54B.90C.45D.126 答案 B 解析 依题意得×n=18,解得n=90,即样本容量为90. 7.某工厂平均每天生产某种机器零件10000件,要求产品检验员每天抽取50件零件,检查其质量状况,采用系统抽样方法抽取,将零件编号为0000,0001,0002,…,9999,若抽取的第一组中的号码为0010,则第三组抽取的号码为( ) A.0210B.0410C.0610D.0810 答案 B 解析 将零件分成50段,分段间隔为200,因此,第三组抽取的号码为0010+2×200=0410,选B. 8.[2018·无锡模拟]若采用系统抽样的方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,则抽取的21人中,编号在区间[241,360]内的人数是________. 答案 6 解析 ∵样本容量为21,∴样本组距为420÷21=20,编号在[241,360]内应抽取的人数是(360-241+1)÷20=6. 9.[2018·潍坊模拟]某校对高三年级1600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生少10人,则该校高三年级的女生人数是________. 答案 760 解析 设样本中女生有x人,则男生有x+10人,所以x+x+10=200,得x=95,设该校高三年级的女生有y人,则由分层抽样的定义可知=,解得y=760. 10.[2018·深圳模拟]一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位: 辆): 轿车A 轿车B 轿车C 舒适型 100 150 z 标准型 300 450 600 按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,则z的值为________. 答案 400 解析 设该厂本月生产轿车为n辆,由题意得=,所以n=2000,z=2000-100-300-150-450-600=400. [B级 知能提升] 1.[2018·江西八校联考]从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( ) A.480B.481C.482D.483 答案 C 解析 根据系统抽样的定义可知样本的编号成等差数列,令a1=7,a2=32,d=25,所以7+25(n-1)≤500,所以n≤20,n∈N,最大编号为7+25×19=482. 2.[2018·浙江五校联考]某报社做了一次关于“什么是新时代的雷锋精神”的调查,在A,B,C,D四个单位回收的问卷数依次成等差数列,且共回收1000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B单位抽取30份,则在D单位抽取的问卷是________份. 答案 60 解析 由题意依次设在A,B,C,D四个单位回收的问卷数分别为a1,a2,a3,a4,在D单位抽取的问卷数为n,则有=,解得a2=200,又a1+a2+a3+a4=1000,即3a2+a4=1000,∴a4=400,∴=,解得n=60. 3.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽的号码是________. 答案 63 解析 由题设知,若m=6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中数字编号顺次为60,61,62,63,…,69,故在第7组中抽取的号码是63. 4.[2015·天津高考]设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛. (1)求应从这三个协会中分别抽取的运动员的人数; (2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛. ①用所给编号列出所有可能的结果; ②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率. 解 (1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2. (2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4),{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种. ②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种,因此,事件A发生的概率P(A)==. 5.[2018·开封模拟]某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n. 解 总体容量为6+12+18=36. 当样本容量是n时,由题意知,系统抽样的间隔为,分层抽样的比例是,抽取的工程师人数为×6=,技术员人数为×12=,技工人数为×18=,所以n应是6的倍数,36的约数,即n=6,12,18. 当样本容量为(n+1)时,总体容量剔除以后是35人,系统抽样的间隔为,因为必须是整数,所以n只能取6,即样本容量n=6.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习 统计 案例 随机 抽样