小升初综合复习知识点汇总数学.docx
- 文档编号:29627845
- 上传时间:2023-07-25
- 格式:DOCX
- 页数:26
- 大小:36.78KB
小升初综合复习知识点汇总数学.docx
《小升初综合复习知识点汇总数学.docx》由会员分享,可在线阅读,更多相关《小升初综合复习知识点汇总数学.docx(26页珍藏版)》请在冰豆网上搜索。
小升初综合复习知识点汇总数学
小升初综合复习知识点汇总
一.整数和小数
1.最小的一位数是1,最小的自然数是0
2.小数的意义:
把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……
4.小数的分类:
小数有限小数
无限循环小数
无限小数
无限不循环小数
5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:
小数的末尾添上0或者去掉0,小数的大小不变。
7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……
小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……
二.数的整除
1.整除:
整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。
2.约数、倍数:
如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。
4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。
质数:
一个数,如果只有1和它本身两个约数,这样的数叫做质数。
质数都有2个约数。
合数:
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
合数至少有3个约数。
最小的质数是2,最小的合数是4
1~20以内的质数有:
2、3、5、7、11、13、17、19
1~20以内的合数有“4、6、8、9、10、12、14、15、16、18
6.能被2整除的数的特征:
个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:
个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:
一个数的各位上数的和能被3整除,这个数就能被3整除。
7.质因数:
如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。
8.分解质因数:
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
9.公约数、公倍数:
几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。
11.互质数:
公约数只有1的两个数叫做互质数。
12.两数之积等于最小公倍数和最大公约数的积。
三.四则运算
1.一个加数=和-另一个加数被减数=差+减数减数=被减数-差
一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商
2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。
3.运算定律:
(1)加法交换律:
a+b=b+a乘法交换律:
a×b=b×a
两个数相加,交换加数的位置,它们的和不变。
两个数相加,交换因数的位置,它们的积不变。
(2)加法结合律:
(a+b)+c=a+(b+c)乘法结合律:
(a×b)×c=a×(b×c)
三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。
三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
(3)乘法分配律:
(a+b)×c=a×c+b×c
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
(4)减法的性质:
a-b-c=a-(b+c)除法的性质:
a÷b÷c=a÷(b×c)
从一个数里连续减去两个数,等于从这个数里减去两个减数的和。
一个数连续除以两个数,等于这个数除以两个除数的积。
四.关系式
1.速度×时间=路程路程÷时间=速度路程÷速度=时间
工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
单价×数量=总价总价÷数量=单价总价÷单价=数量
五.方程
1.方程:
含有未知数的等式叫做方程。
2.方程的解:
使方程左右两边相等的未知数的值,叫做方程的解。
3.解方程:
求方程解的过程叫做解方程。
六.分数和百分数
1.分数的意义:
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
2.分数单位:
把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
3.分数和除法的联系:
分数的分子就是除法中的被除数,分母就是除法中的除数。
分数和小数的联系:
小数实际上就是分母是10、100、1000……的分数。
分数和比的联系:
分数的分子就是比的前项,分数的分母就是比的后项。
4.分数的分类:
分数可以分为真分数和假分数。
5.真分数:
分子小于分母的分数叫做真分数。
真分数小于1。
假分数:
分子大于或等于分母的分数叫做假分数。
假分数大于或者等于1。
6.最简分数:
分子与分母互质的分数叫做最简分数。
7.分数的基本性质:
分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
8.这样的分数可以化成有限小数:
前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。
9.百分数:
表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫做百分率或者百分比。
百分数通常用“%”来表示。
七.量的计量
1.长度单位有:
千米、米、分米、厘米、毫米,写出它们之间的进率
面积单位有:
平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。
体积(容积)单位有:
立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。
质量单位有:
吨、千克、克,写出它们之间的进率。
时间单位有:
世纪、年、月、日、时、分、秒,写出它们之间的进率。
2.一年中的大月有:
1、3、5、7、8、10、12月,共7个,每月31天。
小月有:
4、6、9、11月,共4个,每月30天。
二月平年是28天,闰年是29天。
左拳记月法
3.一年有4个季度,每个季度3个月。
4.平年闰年:
公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。
5.名数:
把计量得到的数和单位名称合起来叫做名数。
单名数:
只带有一个单位名称的叫做单名数。
复名数:
带有两个或两个以上单位名称的叫做复名数。
6.名数的改写:
高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。
八.几何初步知识
1.线段、射线、直线的联系与区别:
联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。
射线和直线是无限长的。
2.角:
从一点引出两条射线所组成的图形叫做角。
3.角的大小:
角的大小看两条边叉开的大小,叉开的越大,角越大。
4.计量角的大小的单位:
度,用符号“°”表示。
5.小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角。
角的两边在一条直线上的角叫做平角。
平角180°。
6.垂线:
两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。
(画图说明)
7.平行线:
在同一平面内不相交的两条直线叫做平行线。
也可以说这两条直线互相平行。
(画图说明)平行线之间垂直线段的长度都相等。
8.三角形:
有三条线段围成的图形叫做三角形。
9.三角形的分类:
(1)按角分:
锐角三角形、钝角三角形、直角三角形。
(2)按边分:
一般三角形、等腰三角形、等边三角形。
10.三角形三个内角和是180°。
11.四边形:
由四条线段围成的图形。
12.圆是一种曲线图形。
圆上任意一点到圆心的距离都相等,这个距离就是圆的半径的长。
13.圆的半径、直径都有无数条。
在同一个圆里,直径是半径的2倍,半径是直径的二分之一。
14.轴对称图形:
如果一个图形沿着一条直线对折,直线两恻的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
15.学过的图形中的轴对称图形有:
圆、等腰三角形、等边三角形、长方形、正方形、等腰梯形
16.周长:
围成一个图形的所有边长的总和就是这个图形的周长。
面积:
物体的表面或围成的平面图形的大小,叫做它们的面积。
17。
表面积:
立体图形所有面的面积的和,叫做这个立体图形的表面积。
体积:
物体所占空间的大小叫做物体的体积。
18.长方体、正方体都有12条棱,6个面,8个顶点。
正方体是特殊的长方体,等边三角形是特殊的等腰三角形。
19.圆柱的三个特点:
(1)上下一样粗细
(2)侧面是曲面(3)两个底面是相同的圆
20.圆柱的高:
圆柱两个底面之间的距离叫做圆柱的高。
圆柱的高有无数条,这些高都平行且相等。
21.把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。
22.圆周率π是一个无限不循环小数。
π=3.141592653……
23.把圆等份成若干份,拼成的图形接近于长方形。
这个长方形的长相当于圆周长的一半,宽就是圆的半径。
24.圆锥的高:
从圆锥的顶点到底面圆心的距离是圆锥的高。
25.等底等高的圆锥的体积是圆柱的
,等底等高的圆柱的体积是圆锥的三倍。
体积和底面积相等的圆柱和圆锥,圆柱的高是圆锥的
,圆锥的高是圆柱的3倍。
九.比和比例
1.比的意义:
两个数相除又叫做两个数的比。
比例的意义:
表示两个比相等的式子叫做比例。
2.求比值:
比的前项除以比的后项所得的商叫做比值。
3.比的基本性质:
比的前项和后项都乘或除以相同的数(0除外),比值不变。
比例的基本性质:
在比例里,两个外项的积等于两个内项的积。
4.应用比的基本性质可以化简比;
应用比例的基本性质可以判断两个比是否能组成比例,也可以求比例里的未知项,也就是解比例。
5.用字母表示比与除法和分数的关系。
a:
b=a÷b=
(b≠0)
6.比例尺:
我们把图上距离和实际距离的比,叫做这幅图的比例尺。
7.图上距离:
实际距离=比例尺或
=比例尺
实际距离=图上距离÷比例尺图上距离=实际距离×比例尺
8.求比值的方法:
根据比值的意义,用前项除以后项,结果是一个数。
化简比的方法:
根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比。
9.正比例关系:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
用式子表示:
=k(一定),用图表示正比例关系是一条直线。
10.反比例关系:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
用式子表示:
x×y=k(一定),用图表示反比例关系是一条曲线。
十.简单的统计
1.常见的统计图有条形统计图、折线统计图和扇形统计图。
2.条形统计图特点:
(1)用一个单位长度表示一定的数量。
(2)用直条的长短来表示数量的多少。
作用:
从图中能清楚地看出各数量的多少,便于相互比较。
折线统计图的特点:
(1)用一个单位长度表示一定的数量。
(2)用折线的起伏来表示数量的增减变化。
作用:
从图中能清楚地看出数量的增减变化情况,也能看出数量的多少。
十一公式的整理
平面图形:
1.长方形:
周长=(长+宽)×2C长=(a+b)×2
面积=长×宽S长=a×b
2.正方形:
周长=边长×4C正=a×4
面积=边长×边长S正=a×a
3.平行四边形的面积=底×高S平=ah
4.三角形的面积=底×高÷2S三=ah÷2
5.梯形的面积=(上底+下底)×高÷2S梯=(a+b)×h÷2
6.圆的周长=直径×3.14C圆=πd
圆的周长=半径×2×3.14C圆=2πr
圆的面积=半径的平方×圆周率S圆=πr2
立体图形:
1.长方体
表面积=(长×宽+长×高+宽×高)×2S长表=(ab+ah+bh)×2
体积=长×宽×高V长=abh
2.正方体
表面积=棱长×棱长×6S正表=a×a×6
体积=棱长×棱长×棱长V正=a3
3.圆柱
侧面积=底面周长×高
表面积=侧面积+两个底面积
体积=底面积×高
4.以上立体图形的表面积、体积可以统一成公式为:
表面积=底面周长×高+两个底面积体积=底面积×高
侧面积
5.圆锥的体积=圆柱的体积÷3V锥=sh÷3
小升初数学知识点1:
比和比例
比和比例
1.比的意义和性质
(1)比的意义
两个数相除又叫做两个数的比。
“:
”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
(2)比的性质
比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3)求比值和化简比
求比值的方法:
用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
(4)比例尺
图上距离:
实际距离=比例尺
要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:
在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
(5)按比例分配
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:
首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
2、比例的意义和性质
(1)比例的意义
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质
在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
(3)解比例
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
3、正比例和反比例
(1)成正比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)
(2)成反比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示xy=k(一定)
小升初数学知识点2:
用字母表示数
用字母表示数
1、用字母表示数的意义和作用
用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式
(1)常见的数量关系
路程用s表示,速度v用表示,时间用t表示,三者之间的关系:
s=vt
v=s/t
t=s/v
总价用a表示,单价用b表示,数量用c表示,三者之间的关系:
a=bc
b=a/c
c=a/b
(2)运算定律和性质
加法交换律:
a+b=b+a
加法结合律:
(a+b)+c=a+(b+c)
乘法交换律:
ab=ba
乘法结合律:
(ab)c=a(bc)
乘法分配律:
(a+b)c=ac+bc
减法的性质:
a-(b+c)=a-b-c
(3)用字母表示几何形体的公式
长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。
c=2(a+b)
s=ab
正方形的边长a用表示,周长用c表示,面积用s表示。
c=4a
s=
平行四边形的底用a表示,高用h表示,面积用s表示。
s=ah
三角形的底用a表示,高用h表示,面积用s表示。
s=ah/2
梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。
s=(a+b)h/2
s=mh
圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。
c=d=2r
扇形的半径用r表示,n表示圆心角的度数,面积用s表示。
s=/360
长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。
s=2(ab+ah+bh)
v=abh
正方体的棱长用a表示,底面周长用c表示,底面积用s表示,体积用v表示.
C=4a
s=6
v=
圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.
s侧=ch
s表=s侧+2s底
v=sh
圆锥的高用h表示,底面积用s表示,体积用v表示.
v=sh/3
3、用字母表示数的写法
数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。
当“1”与任何字母相乘时,“1”省略不写。
在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。
用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。
4、将数值代入式子求值
把具体的数代入式子求值时,要注意书写格式:
先写出字母等于几,然后写出原式,再把数代入式子求值。
字母表示的是数,后面不写单位名称。
同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。
小升初数学知识点3:
简易方程
简易方程
(一)方程和方程的解
1、方程:
含有未知数的等式叫做方程。
注意方程是等式,又含有未知数,两者缺一不可。
方程和算术式不同。
算术式是一个式子,它由运算符号和已知数组成,它表示未知数。
方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。
2、方程的解:
使方程左右两边相等的未知数的值,叫做方程的解。
小升初数学知识点4:
列方程解应用题
列方程解应用题
1、列方程解应用题的意义
用方程式去解答应用题求得应用题的未知量的方法。
2、列方程解答应用题的步骤
(1)弄清题意,确定未知数并用x表示;
(2)找出题中的数量之间的相等关系;
(3)列方程,解方程;
(4)检查或验算,写出答案。
3、列方程解应用题的方法
(1)综合法:
先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
(2)分析法:
先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4、列方程解应用题的范围
小学范围内常用方程解的应用题:
A:
一般应用题;
B:
和倍、差倍问题;
C:
几何形体的周长、面积、体积计算;
D:
分数、百分数应用题;
E:
比和比例应用题。
小升初数学知识点5:
几何的初步知识
几何的初步知识
线和角
(1)线
直线:
直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
射线:
射线只有一个端点;长度无限。
线段:
线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
平行线:
在同一平面内,不相交的两条直线叫做平行线。
两条平行线之间的垂线长度都相等。
垂线:
两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
(2)角
(a)从一点引出两条射线,所组成的图形叫做角。
这个点叫做角的顶点,这两条射线叫做角的边。
(b)角的分类
锐角:
小于90°的角叫做锐角。
直角:
等于90°的角叫做直角。
钝角:
大于90°而小于180°的角叫做钝角。
平角:
角的两边成一条直线,这时所组成的角叫做平角。
平角180°。
周角:
角的一边旋转一周,与另一边重合。
周角是360°。
小升初数学知识点6:
平面图形
平面图形
1、长方形
(1)特征
对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式
c=2(a+b)
s=ab
2、正方形
(1)特征:
四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式
c=4a
s=a2
3、三角形
(1)特征
由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式
s=ah/2
(3)分类
按角分
锐角三角形:
三个角都是锐角。
直角三角形:
有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:
有一个角是钝角。
按边分
不等边三角形:
三条边长度不相等。
等腰三角形:
有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:
三条边长度都相等;三个内角都是60度;有三条对称轴。
4、平行四边形
(1)特征
两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
(2)计算公式
s=ah
5、梯形
(1)特征
只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2)公式
s=(a+b)h/2=mh
6、圆
(1)圆的认识
平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o表示。
半径:
连接圆心和圆上任意一点的线段叫做半径。
一般用r表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
通过圆心并且两端都在圆上的线段叫做直径。
一般用d表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定。
圆有无数条对称轴。
(2)圆的画法
把圆规的两脚分开,定好两脚间的距离(即半径);
把有针尖的一只脚固定在一点(即圆心)上;
把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3)圆的周长
围成圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小升初 综合 复习 知识点 汇总 数学