微卫星基因组分布假定功能和突变机制.docx
- 文档编号:29596354
- 上传时间:2023-07-25
- 格式:DOCX
- 页数:18
- 大小:30.12KB
微卫星基因组分布假定功能和突变机制.docx
《微卫星基因组分布假定功能和突变机制.docx》由会员分享,可在线阅读,更多相关《微卫星基因组分布假定功能和突变机制.docx(18页珍藏版)》请在冰豆网上搜索。
微卫星基因组分布假定功能和突变机制
微卫星:
基因组分布,假定功能和突变机制
You-ChunLi*,AbrahamB.Korol,TzionFahima,AvigdorBeilesandEviatarNevo
Microsatellites,ortandemsimplesequencerepeats(SSR),areabundantacrossgenomesandshowhighlevelsofpolymorphism.SSRgeneticandevolutionarymechanismsremaincontroversial.HereweattempttosummarizetheavailabledatarelatedtoSSRdistributionincodingandnoncodingregionsofgenomesandSSRfunctionalimportance.NumerouslinesofevidencedemonstratethatSSRgenomicdistributionisnonrandom.RandomexpansionsorcontractionsappeartobeselectedagainstforatleastpartofSSRloci,presumablybecauseoftheireffectonchromatinorganization,regulationofgeneactivity,recombination,DNAreplication,cellcycle,mismatchrepairsystem,etc.Thisreviewalsodiscussestheroleoftwoputativemutationalmechanisms,replicationslippageandrecombination,andtheirinteractioninSSRvariation.
Genomicmicrosatellites(simplesequencerepeats;SSRs),iterationsof1-6bpnucleotidemotifs,havebeendetectedinthegenomesofeveryorganismanalysedsofar,andareoftenfoundatfrequenciesmuchhigherthanwouldbepredictedpurelyonthegroundsofbasecomposition(Tautz&Renz1984;Epplenetal.1993).Bell(1996)suggestedthattheabundanceandlengthdistributionofSSRsacrossthegenomecouldresultfromunbiasedsingle-steprandom-walkprocesses.SomeauthorsconsideredSSRstobeselectivelyneutralsequencesrandomlyoralmostrandomlydistributedovertheeuchromaticgenome(Schlötterer&Wiehe1999;Schlötterer2000).Bachtrogetal.(1999)detectedasignificantpositivecorrelationbetweenATcontentand(AT/TA)nSSRdensity,suggestingthatSSRgenesismaybearandomprocess.However,theyalsofoundthat39%ofthecontiguoussequencesanalyseddeviatefromrandomdistributionofSSRsinDrosophilamelanogaster.
ThecontroversialinterpretationofSSRevolutionisreflectedinrecentliterature.NumerousstudieshavedocumentedSSRstructuralpatternswithallelesizeconstraints(Garzaetal.1995;Dermitzakisetal.1998;Samadietal.1998;Lietal.2000c;2002a),andfunctionalsignificance(reviewedin:
Kashietal.1997;Kingetal.1997;Kashi&Soller1999;King&Soller1999;Gur-Arieetal.2000).Nevertheless,SSRsareusuallyjustconsideredasevolutionarilyneutralDNAmarkers(e.g.Tachida&Iizuka1992;Awadalla&Ritland1997;Schlötterer&Wiehe1999).SuchcontroversycallsforfurtherevidenceofSSRfunctionalimportanceandjustifiesacomprehensivediscussionconcerningtheevolutionarysignificanceofgenomicSSRs.AnattempttoanalysethephenomenonofSSRvariationfromtheviewpointofthe'qualitative'alternative,i.e.functionalvs.neutral,doesnotseemtosuittheproblem.Infact,theremaybenofundamentalcontradictionintheoppositeinterpretationsofSSRvariation:
functionalvs.neutral,ifthequestionisformulatedinquantitativeratherthanqualitativeterms.TherichevidenceaccumulatedonSSRsandtheirmanifoldeffectsjustifiesthisapproach.
Thepresentreviewfocusesonthefollowingaspects:
SSRdistributionacrosscodingandnoncodingregionsofthegenome;(ii)evolutionarysignificanceanddynamicsofSSRgenomicdistribution;(iii)SSReffects/functionsingeneexpressionandgeneticdisorder,chromatinorganization,cellcycle,andDNAmetabolicprocesses;and(iv)therelativecontributionofreplicationslippageandassociatedDNArepairmechanismsandrecombinationtoSSRmutation.
SSRsconstitutearatherlargefractionofnoncodingDNAandarerelativelyrareinprotein-codingregions.Forinstance,alloftheobserved101mono-,di-andtetranucleotideSSRswerelocatedinnoncodingregionsacross54plantspecies(Wangetal.1994).AlltypesofSSRs(frommono-tohexanucleotiderepeats)werefoundinexcess(comparedtorandomappearance)innoncodinggenomicregionsacrossseveneukaryoticclades:
Saccharomycescerevisiae,Caenorhabditiselegans,Schizosaccharomycespombe,Mus,Drosophila,plants,andprimates(Metzgaretal.2000).Morganteetal.(2002)reportedthatallSSRtypesexcepttripletsandhexanucleotidesaresignificantlylessfrequentinthe25762predictedprotein-codingsequencescomparedwiththenoncodingfractioninsixplantspeciesincludingArabidopsis,rice,soybean,maize,andwheat(Triticumaestivum).InthegenomeofJapanesepufferfish,Fugurubripes,only11.6%of6042SSRsweredetectedinprotein-codingregions(Edwardsetal.1998).Thisisattributabletonegativeselectionagainstframeshiftmutationsincodingregions(Metzgaretal.2000).Previously,asimilardistributionpatternwasfoundfortripletSSRsincodingandnoncodingregionsofgenomesoffungi,protists,prokaryotes,viruses,organelles,plasmidsandhumans(Field&Wills1996;Wrenetal.2000).However,thedisease-associatedtripletrepeatsaremostlyfoundincodingregionsofthehumangenome(Nadiretal.1996).Likewise,Morganteetal.(2002)recentlyfoundthattripletSSRsdoubledinfrequencyinthecodingregionoftheabove-mentionedsixplantspecies,asaresultofmutationpressureandpossiblypositiveselectionforspecificsingleaminoacidstretches.Sometri-arraysarenotextensivelyconservedforlongperiodsoftime,evenwhentheyformpartsofprotein-codingsequences,sincelongtri-repeats(e.g.CAGarrays)canbedestabilizedduringmeiosisorgametogenesis(Jankowskietal.2000).
ThemajorityofSSRs(48-67%)foundinmanyspeciesaredinucleotides(Wangetal.1994;Schugetal.1998),butinprimatesmononucleotides[mainly,poly(A/T)tracts]arethemostcopiousclassesofSSRs(Tóthetal.2000;Wrenetal.2000).IncontrasttothetripletSSRs,di-andtetranucleotideSSRsaremuchlessfrequentincodingregionsthaninnoncodingregions.Forexample,dinucleotiderepeatsareabout20timeslessfrequentintheexpressedsequencesthaninrandomgenomicclonesofNorwayspruce,Piceaabies(Scottietal.2000).Ineightprokaryotesandyeast,longmono-anddi-tractsarealmostexclusivelydistributedinnontranslatedregions(Field&Wills1998).ForperfectdimericSSRs,Bell&Jurka(1997)foundthatshorterrepeats(3units)incodingsequencesandotherfunctionallyimportantDNAregionscanbepredictedbyaBernoullimodel;and(ii)thelengthdistributionoflonger(5)perfectdimericSSRDNAinanoncodingregionfitstheunbiasedsingle-stepmutationmodel.Inthismodel,repeatsarepermittedtochangelengthbyplusorminusoneunit,withequalprobabilities,andbasesubstitutionsareallowedtodestroylongperfectrepeats,producingtwoshortperfectrepeats.AnalysisofavailableDNAsequencesofhuman,mouse,worm(Caenorhabditiselegans),andyeastgenomesshowsthatthedistributionfunctionsofallpossibledimericSSRsareexponentialincodingDNA,whereasinnoncodingDNAmostofthedimericSSRshavesurprisinglylongtailsthatbetterfitapower-lawfunction(Dokholyanetal.2000).Theselong,nonexponentialtailsarehypothesizedtoresultfromahighertoleranceofnoncodingDNAtomutations(Dokholyanetal.2000).AnumberofgeneswasfoundwithdinucleotideSSRsintheuntranslated5'and/or3'ends,suchasinfivegenesofchannelcatfishIctaluruspunctatus(Liuetal.1999)andinthemammalianheatshockprotein70(hsp70)genes[(GA)6CAG(TC)24tract:
Lisowskaetal.(1997)].DinucleotideSSRsarealsofoundinintrons.Forinstance,inMusmusculustheintronAofAdh-1genecontains(TA)14(TG)8,and(TA)19,andtheintronofIL-5genecontains(AT)17;inthetreeBetulapendutheintronofBVGC34geneincludes(CA)17(TA)14,and(TGTA)3.Thepotentialsizeexpansionofdi-ortetranucleotideSSRsatthe3'and5'regionsandintronscouldleadtodisruptionoftheoriginalproteinand/orformationofnewgenesbyframeshift(Bachtrogetal.1999;Liuetal.1999).Thesepatternssuggestthatrandomdistributionsofsuchdi-andtetranucleotideSSRswerestronglyselectedagainst(Bachtrogetal.1999;Liuetal.1999).Foragivennumberofrepeats,thetetranucleotidelocusislongerthanadinucleotide.Thismayaffecttheselectivepressure,ifthestabilityofmeioticprocessesdependsontheabsolutesize(inbasepairs)ofthetargetregion.Lociwithlongerrepeatunitsseemtoexperiencestrongerselectionagainstthedifferenceinsize,especiallyingenomeregionswithhighrecombinationrates(Samadietal.1998).
ThesefindingsalsosuggestthatthedifferencesbetweencodingandnoncodingSSRfrequenciesarisefromspecificselectionagainstframe-shiftmutationsincodingregionsresultingfromlengthchangesinnontripletrepeats(Liuetal.1999;Dokholyanetal.2000).Nevertheless,14%ofallproteinscontainrepeatedsequences,withathreetimeshigherabundanceofrepeatsineukaryotescomparedtoprokaryotes(Marcotteetal.1999).Prokaryoticandeukaryoticrepeatfamiliesareclusteredtononhomologousproteins.Thismayindicatethatrepeatedsequencesemergedafterthesetwokingdomshadsplit.Theeukaryotesincorporatingmorerepeatsmayhaveanevolutionaryadvantageoffasteradaptationtonewenvironments(Marcotteetal.1999;seealsobelowsection5andKashietal.1997;King&Soller1999;Wrenetal.2000).
Tóthetal.(2000)conductedadetailedanalysisofSSRsinseveraleukaryotictaxa,fromfungitohumans,andrevealedhighlytaxon-specificpatternsinthedistributionofdifferentrepeattypes(frommono-uptohexanucleotides)fordifferentmotifsincodingandnoncodingsequences,inintronsandintergenicregions.Thisspecificitycanpartlybeexplainedbyinteractionofmutationmechanismsanddifferentialselection.TheaccumulatedempiricalevidenceseemstoindicatethatSSRsequencesaremoreabundantandlongerinvertebratesthan
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 卫星 基因组 分布 假定 功能 突变 机制