高三物理二轮练习资料专项1第3讲牛顿运动定律的应用.docx
- 文档编号:2959298
- 上传时间:2022-11-16
- 格式:DOCX
- 页数:14
- 大小:118.69KB
高三物理二轮练习资料专项1第3讲牛顿运动定律的应用.docx
《高三物理二轮练习资料专项1第3讲牛顿运动定律的应用.docx》由会员分享,可在线阅读,更多相关《高三物理二轮练习资料专项1第3讲牛顿运动定律的应用.docx(14页珍藏版)》请在冰豆网上搜索。
高三物理二轮练习资料专项1第3讲牛顿运动定律的应用
高三物理二轮练习资料专项1第3讲牛顿运动定律的应用
要点归纳
(一)深刻理解牛顿第【一】第三定律
1、牛顿第一定律(惯性定律)
一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止、
(1)理解要点
①运动是物体的一种属性,物体的运动不需要力来维持、
②它定性地揭示了运动与力的关系:
力是改变物体运动状态的缘故,是使物体产生加速度的缘故、
③牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例、牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系、
(2)惯性:
物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性、
①惯性是物体的固有属性,与物体的受力情况及运动状态无关、
②质量是物体惯性大小的量度、
2、牛顿第三定律
(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为F=-F′、
(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消、
(3)牛顿第三定律的应用特别广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律、
(二)牛顿第二定律
1、定律内容
物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比、
2、公式:
F合=ma
理解要点
①因果性:
F合是产生加速度a的缘故,它们同时产生,同时变化,同时存在,同时消逝、
②方向性:
a与F合基本上矢量,方向严格相同、
③瞬时性和对应性:
a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力、
3、应用牛顿第二定律解题的一般步骤:
(1)确定研究对象;
(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;
(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;
(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;
(5)统一单位,计算数值、
热点、重点、难点
【一】正交分解法在动力学问题中的应用
当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法、
1、在适当的方向建立直角坐标系,使需要分解的矢量尽可能少、
2、Fx合=max合,Fy合=may合,Fz合=maz合、
3、正交分解法对本章各类问题,甚至对整个高中物理来说基本上一重要的思想方法、
●例6如图1-15甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1kg的小球穿在细杆上静止于细杆底端O点、现有水平向右的风力F作用于小球上,经时间t1=2s后停止,小球沿细杆运动的部分v-t图象如图1-15乙所示、试求:
(取g=10m/s2,sin37°=0.6,cos37°=0.8)
图1-15
(1)小球在0~2s内的加速度a1和2~4s内的加速度a2、
(2)风对小球的作用力F的大小、
【解析】
(1)由图象可知,在0~2s内小球的加速度为:
a1=
=20m/s2,方向沿杆向上
在2~4s内小球的加速度为:
a2=
=-10m/s2,负号表示方向沿杆向下、
(2)有风力时的上升过程,小球的受力情况如图1-15丙所示
图1-15丙
在y方向,由平衡条件得:
FN1=Fsinθ+mgcosθ
在x方向,由牛顿第二定律得:
Fcosθ-mgsinθ-μFN1=ma1
停风后上升阶段,小球的受力情况如图1-15丁所示
图1-15丁
在y方向,由平衡条件得:
FN2=mgcosθ
在x方向,由牛顿第二定律得:
-mgsinθ-μFN2=ma2
联立以上各式可得:
F=60N、
【点评】①斜面(或类斜面)问题是高中最常出现的物理模型、
②正交分解法是求解高中物理题最重要的思想方法之一、
【二】连接体问题(整体法与隔离法)
高考卷中常出现涉及两个研究对象的动力学问题,其中又包含两种情况:
一是两对象的速度相同需分析它们之间的相互作用,二是两对象的加速度不同需分析各自的运动或受力、隔离(或与整体法相结合)的思想方法是处理这类问题的重要手段、
1、整体法是指当连接体内(即系统内)各物体具有相同的加速度时,能够把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,运用牛顿第二定律对整体列方程求解的方法、
2、隔离法是指当研究对象涉及由多个物体组成的系统时,假设要求连接体内物体间的相互作用力,那么应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法、
3、当连接体中各物体运动的加速度相同或要求合外力时,优先考虑整体法;当连接体中各物体运动的加速度不相同或要求物体间的作用力时,优先考虑隔离法、有时一个问题要两种方法结合起来使用才能解决、
●例7如图1-16所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为k的轻质弹簧相连,在外力F1、F2的作用下运动、F1>F2,当运动达到稳定时,弹簧的伸长量为()
图1-16
A、
B、
C、
D、
【解析】取A、B及弹簧整体为研究对象,由牛顿第二定律得:
F1-F2=2ma
取B为研究对象:
kx-F2=ma
(或取A为研究对象:
F1-kx=ma)
可解得:
x=
、
[答案]C
【点评】①解析中的三个方程任取两个求解都能够、
②当地面粗糙时,只要两物体与地面的动摩擦因数相同,那么A、B之间的拉力与地面光滑时相同、
★同类拓展3如图1-17所示,质量为m的小物块A放在质量为M的木板B的左端,B在水平拉力的作用下沿水平地面匀速向右滑动,且A、B相对静止、某时刻撤去水平拉力,通过一段时间,B在地面上滑行了一段距离x,A在B上相关于B向右滑行了一段距离L(设木板B足够长)后A和B都停了下来、A、B间的动摩擦因数为μ1,B与地面间的动摩擦因数为μ2,且μ2>μ1,那么x的表达式应为()
图1-17
A、x=
LB、x=
C、x=
D、x=
【解析】设A、B相对静止一起向右匀速运动时的速度为v,撤去外力后至停止的过程中,A受到的滑动摩擦力为:
f1=μ1mg
其加速度大小a1=
=μ1g
B做减速运动的加速度大小a2=
由于μ2>μ1,因此a2>μ2g>μ1g=a1
即木板B先停止后,A在木板上接着做匀减速运动,且其加速度大小不变
对A应用动能定理得:
-f1(L+x)=0-
mv2
对B应用动能定理得:
μ1mgx-μ2(m+M)gx=0-
Mv2
解得:
x=
、
[答案]C
【点评】①尽管使A产生加速度的力由B施加,但产生的加速度a1=μ1g是取大地为参照系的、加速度是相对速度而言的,因此加速度一定和速度取相同的参照系,与施力物体的速度无关、
②动能定理可由牛顿第二定律推导,特别关于匀变速直线运动,两表达式特别容易相互转换、
【三】临界问题
●例8如图1-18甲所示,滑块A置于光滑的水平面上,一细线的一端固定于倾角为45°、质量为M的光滑楔形滑块A的顶端P处,细线另一端拴一质量为m的小球B、现对滑块施加一水平方向的恒力F,要使小球B能相对斜面静止,恒力F应满足什么条件?
图1-18甲
【解析】
先考虑恒力背离斜面方向(水平向左)的情况:
设恒力大小为F1时,B还在斜面上且对斜面的压力为零,如今A、B有共同加速度a1,B的受力情况如图1-18乙所示,有:
图1-18乙
Tsinθ=mg,Tcosθ=ma1
解得:
a1=gcotθ
即F1=(M+m)a1=(M+m)gcotθ
由此可知,当水平向左的力大于(M+m)gcotθ时,小球B将离开斜面,关于水平恒力向斜面一侧方向(水平向右)的情况:
设恒力大小为F2时,B相对斜面静止时对悬绳的拉力恰好为零,如今A、B的共同加速度为a2,B的受力情况如图1-18丙所示,有:
图1-18丙
FNcosθ=mg,FNsinθ=ma2
解得:
a2=gtanθ
即F2=(M+m)a2=(M+m)gtanθ
由此可知,当水平向右的力大于(M+m)gtanθ,B将沿斜面上滑,综上可知,当作用在A上的恒力F向左小于(M+m)gcotθ,或向右小于(M+m)gtanθ时,B能静止在斜面上、
[答案]向左小于(M+m)gcotθ或向右小于(M+m)gtanθ
【点评】斜面上的物体、被细绳悬挂的物体这两类物理模型是高中物理中重要的物理模型,也是高考常出现的重要物理情境、
【四】超重与失重问题
1、超重与失重只是物体在竖直方向上具有加速度时所受支持力不等于重力的情形、
2、要注意飞行器绕地球做圆周运动时在竖直方向上具有向心加速度,处于失重状态、
●例9为了测量某住宅大楼每层的平均高度(层高)及电梯的运行情况,甲、乙两位同学在一楼电梯内用电子体重计及秒表进行了以下实验:
质量m=50kg的甲同学站在体重计上,乙同学记录电梯从地面一楼到顶层的过程中,体重计的示数随时间变化的情况,并作出了如图1-19甲所示的图象、t=0时,电梯静止不动,从电梯内楼层按钮上获知该大楼共19层、求:
(1)电梯启动和制动时的加速度大小、
(2)该大楼的层高、
图1-19甲
【解析】
(1)关于启动状态有:
F1-mg=ma1
得:
a1=2m/s2
关于制动状态有:
mg-F3=ma2
得:
a2=2m/s2、
(2)电梯匀速运动的速度v=a1t1=2×1m/s=2m/s
从图中读得电梯匀速上升的时间t2=26s
电梯运行的总时间t=28s
电梯运行的v-t图象如图1-19乙所示,
图1-19乙
因此总位移s=
v(t2+t)=
×2×(26+28)m=54m
层高h=
=
=3m、
[答案]
(1)2m/s22m/s2
(2)3m
经典考题
在本专题中,正交分解、整体与隔离相结合是最重要也是最常用的思想方法,是高考中考查的重点、力的独立性原理、运动图象的应用次之,在高考中出现的概率也较大、
1、有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑、AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图1-20甲所示)、现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力N和细绳上的拉力T的变化情况是[1998年高考·上海物理卷]()
图1-20甲
A、N不变,T变大B、N不变,T变小
C、N变大,T变大D、N变大,T变小
【解析】Q环的受力情况如图1-20乙所示,由平衡条件得:
Tcosθ=mg、
P环向左移动后θ变小,T=
变小、
图1-20乙图1-20丙
P环的受力情况如图1-20丙所示,由平衡条件得:
NP=mg+Tcosθ=2mg,NP与θ角无关、
应选项B正确、
[答案]B
【点评】①本例是正交分解法、隔离法的典型应用,以后的许多考题都由此改编而来、
②求解支持力N时,还可取P、Q组成的整体为研究对象,将整体受到的外力正交分解知竖直方向有:
NQ=2mg、
2、如图1-21甲所示,在倾角为α的固定光滑斜面上有一块用绳子拴着的长木板,木板上站着一只猫、木板的质量是猫的质量的2倍、当绳子突然断开时,猫马上沿着板向上跑,以保持其相对斜面的位置不变、那么如今木板沿斜面下滑的加速度为[2004年高考·全国理综卷Ⅳ]()
图1-21甲
A、
sinαB、gsinα
C、
gsinαD、2gsinα
【解析】绳子断开后猫的受力情况如图1-21乙所示,由平衡条件知,木板对猫有沿斜面向上的摩擦力,有:
f=mgsinα
图1-21乙图1-21丙
再取木板为研究对象,其受力情况如图1-21丙所示、由牛顿第二定律知:
2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物理 二轮 练习 资料 专项 牛顿 运动 定律 应用