部分数学知识点的大纲.docx
- 文档编号:29493742
- 上传时间:2023-07-24
- 格式:DOCX
- 页数:18
- 大小:274.91KB
部分数学知识点的大纲.docx
《部分数学知识点的大纲.docx》由会员分享,可在线阅读,更多相关《部分数学知识点的大纲.docx(18页珍藏版)》请在冰豆网上搜索。
部分数学知识点的大纲
1、九九乘法口诀表.
2、线和角的认识;
1.直线、线段和射线
直线:
没有端点,向两边无限延长,无法度量。
线段:
有两个端点,是直线上两点之间的一段,可以度量。
射线:
只有一个端点,把线段的一端无限延长得到一条射线,无法度量。
2.垂线:
两条直线相交成直角时,这两条直线叫做互相垂直。
其中一条直线叫做另一条直线的垂线。
3.平行线:
在同一平面内永不相交的两条直线叫平行线。
4.角:
角的大小与两边叉开的大小有关,而与角的两边长短无关。
锐角:
大于0°而小于90°直角:
等于90°钝角:
大于90°而小于180°平角:
等于180° 周角:
等于360°
3、三角形的分类
三角形是由三条线段围成的图形,从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,一个三角形有三条高。
(三角形内角和是180°
4、四边形和对称性的认识;
.四边形
四边形是由四条线段围成的图形。
(任意四边形的内角和都是360°)
平行四边形:
对边平行且相等。
长方形:
对边平行且相等,4个角都是直角。
(长方形是特殊的平行四边形)
正方形:
对边平行,四相等,4个角都是直角。
(正方形是特殊的长方形)
梯形:
只有一组对边平行,另一组对边不平行。
(等腰梯形的两腰相等,且同底上的两个角相等)
7.扇形:
由圆心角的两条半径和它所对的弧围成的图形。
8.轴对称图形:
如果一个图形沿着一条直线对折,两边的图形能够完全重合,这个图形叫做轴对称图形。
这条直线叫做对称轴。
5、比和比例
1.比:
表示两个数相除。
(a:
b=a÷b=ab)
2.比例:
表示两个比相等的式子。
(a:
b=c:
d或ab=cd)
3.正比例:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,(也就是商一定)。
这两种量就叫做正比例的量,它们的关系叫做正比例关系。
即:
(k一定)(两数相除,商一定,这两个数成正比例关系)
4.反比例:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
x×y=k(k一定)(两数相乘,积一定,则这两个数成反比例
6、基本图形的计算公式
1、正方形(C:
周长S:
面积a:
边长)
周长=边长×4C=4a面积=边长×边长S=a×a
2、正方体(V:
体积a:
棱长)
表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a
3、长方形(C:
周长S:
面积a:
边长)
周长=(长+宽)×2C=2(a+b)
面积=长×宽S=ab
4、长方体(V:
体积s:
面积a:
长b:
宽h:
高)
(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)
(2)体积=长×宽×高V=abh
5、三角形(s:
面积a:
底h:
高)
面积=底×高÷2s=ah÷2
三角形高=面积×2÷底
三角形底=面积×2÷高
6、平行四边形(s:
面积a:
底h:
高)
面积=底×高s=ah
7、梯形(s:
面积a:
上底b:
下底h:
高)
面积=(上底+下底)×高÷2s=(a+b)×h÷2
8、圆形(S:
面积C:
周长лd=直径r=半径)
(1)周长=直径×л=2×л×半径C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体(v:
体积h:
高s:
底面积r:
底面半径c:
底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd)
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10、圆锥体(v:
体积h:
高s:
底面积r:
底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
15、相遇问题
相遇路程=速度和×相遇时间;
相遇时间=相遇路程÷速度和;
速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本;
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比;
利息=本金×利率×时间;税后利息=本金×利率×时间×(1-20%)
7、常用单位换算
长度单位换算
1千米=1000米
1米=10分米
1分米=10厘米
1米=100厘米
1厘米=10毫米
面积单位换算:
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算:
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算:
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算:
1元=10角
1角=10分
1元=100分
时间单位换算:
1世纪=100年 1年=12月
大月(31天)有:
1\3\5\7\8\10\12月
小月(30天)的有:
4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时
1时=60分
1分=60秒
1时=3600秒
8、数的认识;
(一)整数
1、整数的意义:
自然数和0都是整数。
2、自然数:
我们在数物体的时候,用来表示物体个数的1,2,3„„叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位
一(个)、十、百、千、万、十万、百万、千万、亿„„都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位:
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除
整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:
10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:
3、6、9、12„„其中最小的倍数是3,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:
202、480、304,都能被2整除。
。
个位上是0或5的数,都能被5整除,例如:
5、30、405都能被5整除。
。
9、相遇和追及问题
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
10、有理数
1、有理数:
(1)凡能写成ab(a、b都是整数且a≠0)形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
(注意:
0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数)
(2)有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。
(3)自然数是指0和正整数;a>0,则a是正数;a<0,则a是负数;a≥0,则a是正数或0(即a是非负数);a≤0,则a是负数或0(即a是非正数)。
2、数轴:
数轴是规定了原点、正方向、单位长度的一条直线.
3、相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。
(2)注意:
a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0时,则a+b=0;即a、b互为相反数。
4、绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。
(注意:
绝对值的意义是数轴上表示某数的点离开原点的距离)。
(2)绝对值可表示为|a|。
(3)|a|是重要的非负数,即|a|≥0。
(注意:
|a|²|b|=|a²b|)。
5、有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数>0,小数-大数<0.
6、互为倒数:
乘积为1的两个数互为倒数。
(注意:
0没有倒数;若a、b
≠0,那么ab的倒数是ba;倒数是本身的数是±1;若ab=1,则a、b互为倒数;若ab=-1,则a、b互为负倒数。
7、有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数与0相加,仍得这个数。
8、有理数加法的运算律:
(1)加法的交换律:
a+b=b+a。
(2)加法的结合律:
(a+b)+c=a+(b+c)。
9、有理数减法法则:
减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
10、有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘。
(2)任何数同零相乘都得零。
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
11、有理数乘法的运算律:
(1)乘法的交换律:
ab=ba。
(2)乘法的结合律:
(ab)c=a(bc)。
(3)乘法的分配律:
a(b+c)=ab+ac。
12、有理数除法法则:
除以一个数等于乘以这个数的倒数。
(注意:
零不能做除数)
13、有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数。
注意:
当n为正奇数时:
(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:
(-a)n=an
或(a-b)n=(b-a)n。
14、乘方的定义:
(1)求相同因式积的运算,叫做乘方。
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂。
(3)a2是重要的非负数,即a2≥0;若a2+|b|=0,则a=0,b=0。
(4)底数的小数点移动一位,平方数的小数点移动二位。
15、科学记数法:
把一个大于10的数记成a³10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
16、近似数的精确位:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
17、有效数字:
从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18、混合运算法则:
先乘方,后乘除,最后加减。
注意:
怎样算简单,怎样算准确,是数学计算的最重要的原则。
19、特殊值法:
是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。
11、一元一次方程
1、等式与等量:
用“=”号连接而成的式子叫等式。
注意:
“等量就能代入”。
2、等式的性质:
等式性质1:
等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
等式性质2:
等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。
3、方程:
含未知数的等式,叫方程。
4、方程的解:
使等式左右两边相等的未知数的值叫方程的解;注意:
“方程的解就能代入”。
5、移项:
改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。
6、一元一次方程:
只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
7、一元一次方程的标准形式:
ax+b=0(x是未知数,a、b是已知数,且a≠0)。
8、一元一次方程的最简形式:
ax=b(x是未知数,a、b是已知数,且a≠0)。
9、一元一次方程解法的一般步骤:
整理方程—去分母—去括号—移项—合并同类项—系数化为1—(检验方程的解)。
12、二元一次方程组
1、二元一次方程:
含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程。
(注意:
一般说二元一次方程有无数个解)
2、二元一次方程组:
两个二元一次方程联立在一起是二元一次方程组。
3、二元一次方程组的解:
使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解。
注意:
一般说二元一次方程组只有唯一解(即公共解)。
4、二元一次方程组的解法:
(1)代入消元法
(2)加减消元法(3)注意:
判断如何解简单是关键
13、线段、角、相交线与平行线的关系
14、全等三角形的判定与证明
一、全等三角形
1.定义:
能够完全重合的两个三角形叫做全等三角形。
理解:
①全等三角形形状与大小完全相等,与位置无关;
②一个三角形经过平移、翻折、旋转可以得到它的全等形;
③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质
(1)全等三角形的对应边相等、对应角相等。
理解:
①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定
边边边:
三边对应相等的两个三角形全等(可简写成“SSS”)
边角边:
两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)
角边角:
两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)
角角边:
两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)
斜边.直角边:
斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)
15、实数的认识
16、一次函数
一.常量、变量:
在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:
函数的定义:
一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
三、函数中自变量取值范围的求法:
(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:
一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.
五、用描点法画函数的图象的一般步骤
1、列表(表中给出一些自变量的值及其对应的函数值。
)
注意:
列表时自变量由小到大,相差一样,有时需对称。
2、描点:
(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:
(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:
(1)列表法
(2)图像法(3)解析式法
七、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.
当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.
八、正比例函数的图象与性质:
(1)图象:
正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
(2)性质:
当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;
当k<0时,直线y=kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。
九、求函数解析式的方法:
待定系数法:
先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1.一次函数与一元一次方程:
从“数”的角度看x为何值时函数y=ax+b的值为0.
2.求ax+b=0(a,b是常数,a≠0)的解,从“形”的角度看,求直线y=ax+b与x轴交点的横坐标
3.一次函数与一元一次不等式:
解不等式ax+b>0(a,b是常数,a≠0).从“数”的角度看,x为何值时函数y=ax+b的值大于0.
4.解不等式ax+b>0(a,b是常数,a≠0).从“形”的角度看,求直线y=ax+b在x轴上方的部分(射线)所对应的的横坐标的取值范围.
17、勾股定理
勾股定理:
如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:
如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 部分 数学 知识点 大纲