第四章 归纳与发现.docx
- 文档编号:29388561
- 上传时间:2023-07-22
- 格式:DOCX
- 页数:7
- 大小:85.95KB
第四章 归纳与发现.docx
《第四章 归纳与发现.docx》由会员分享,可在线阅读,更多相关《第四章 归纳与发现.docx(7页珍藏版)》请在冰豆网上搜索。
第四章归纳与发现
第四章 归纳与发现
归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段.这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法.下面举几个例题,以见一般.
例1如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,…这个六边形点阵共有n层,试问第n层有多少个点?
这个点阵共有多少个点?
分析与解我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数.第一层有点数:
1;
第二层有点数:
1×6;
第三层有点数:
2×6;
第四层有点数:
3×6;
……
第n层有点数:
(n-1)×6.
因此,这个点阵的第n层有点(n-1)×6个.n层共有点数为
例2在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:
(1)这n个圆把平面划分成多少个平面区域?
(2)这n个圆共有多少个交点?
分析与解
(1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n个特定的圆),观察平面被它们所分割成的平面区域有多少个?
为此,我们列出表18.1.
由表18.1易知
S2-S1=2,
S3-S2=3,
S4-S3=4,
S5-S4=5,
……
由此,不难推测
Sn-Sn-1=n.
把上面(n-1)个等式左、右两边分别相加,就得到
Sn-S1=2+3+4+…+n,
因为S1=2,所以
下面对Sn-Sn-1=n,即Sn=Sn-1+n的正确性略作说明.
因为Sn-1为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点P时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在Sn-1上,所以有Sn=Sn-1+n.
(2)与
(1)一样,同样用观察、归纳、发现的方法来解决.为此,可列出表18.2.
由表18.2容易发现
a1=1,
a2-a1=1,
a3-a2=2,
a4-a3=3,
a5-a4=4,
……
an-1-an-2=n-2,
an-an-1=n-1.
n个式子相加
注意请读者说明an=an-1+(n-1)的正确性.
例3设a,b,c表示三角形三边的长,它们都是自然数,其中a≤b≤c,如果b=n(n是自然数),试问这样的三角形有多少个?
分析与解我们先来研究一些特殊情况:
(1)设b=n=1,这时b=1,因为a≤b≤c,所以a=1,c可取1,2,3,….若c=1,则得到一个三边都为1的等边三角形;若c≥2,由于a+b=2,那么a+b不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个.
(2)设b=n=2,类似地可以列举各种情况如表18.3.
这时满足条件的三角形总数为:
1+2=3.
(3)设b=n=3,类似地可得表18.4.
这时满足条件的三角形总数为:
1+2+3=6.
通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为:
这个猜想是正确的.因为当b=n时,a可取n个值(1,2,3,…,n),对应于a的每个值,不妨设a=k(1≤k≤n).由于b≤c<a+b,即n≤c<n+k,所以c可能取的值恰好有k个(n,n+1,n+2,…,n+k-1).所以,当b=n时,满足条件的三角形总数为:
例4设1×2×3×…×n缩写为n!
(称作n的阶乘),试化简:
1!
×1+2!
×2+3!
×3+…+n!
×n.
分析与解先观察特殊情况:
(1)当n=1时,原式=1=(1+1)!
-1;
(2)当n=2时,原式=5=(2+1)!
-1;
(3)当n=3时,原式=23=(3+1)!
-1;
(4)当n=4时,原式=119=(4+1)!
-1.
由此做出一般归纳猜想:
原式=(n+1)!
-1.
下面我们证明这个猜想的正确性.
1+原式=1+(1!
×1+2!
×2+3!
×3+…+n!
×n)
=1!
×2+2!
×2+3!
×3+…+n!
×n
=2!
+2!
×2+3!
×3+…+n!
×n
=2!
×3+3!
×3+…+n!
×n
=3!
+3!
×3+…+n!
×n=…
=n!
+n!
×n=(n+1)!
,
所以原式=(n+1)!
-1.
例5设x>0,试比较代数式x3和x2+x+2的值的大小.
分析与解本题直接观察,不好做出归纳猜想,因此可设x等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路.为此,设x=0,显然有
x3<x2+x+2.①
设x=10,则有x3=1000,x2+x+2=112,所以
x3>x2+x+2.②
设x=100,则有x3>x2+x+2.
观察、比较①,②两式的条件和结论,可以发现:
当x值较小时,x3<x2+x+2;当x值较大时,x3>x2+x+2.
那么自然会想到:
当x=?
时,x3=x2+x+2呢?
如果这个方程得解,则它很可能就是本题得解的“临界点”.为此,设x3=x2+x+2,则
x3-x2-x-2=0,
(x3-x2-2x)+(x-2)=0,
(x-2)(x2+x+1)=0.
因为x>0,所以x2+x+1>0,所以x-2=0,所以x=2.这样
(1)当x=2时,x3=x2+x+2;
(2)当0<x<2时,因为
x-2<0,x2+x+2>0,
所以(x-2)(x2+x+2)<0,
即
x3-(x2+x+2)<0,
所以x3<x2+x+2.
(3)当x>2时,因为
x-2>0,x2+x+2>0,
所以(x-2)(x2+x+2)>0,
即
x3-(x2+x+2)>0,
所以x3>x2+x+2.
综合归纳
(1),
(2),(3),就得到本题的解答.
练习七
1.试证明例7中:
2.平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点.试求:
(1)这n条直线共有多少个交点?
(2)这n条直线把平面分割为多少块区域?
然后做出证明.)
3.求适合x5=656356768的整数x.
(提示:
显然x不易直接求出,但可注意其取值范围:
505<656356768<605,所以502<x<602.)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四章 归纳与发现 第四 归纳 发现