《圆柱的表面积》教学反思.docx
- 文档编号:29207024
- 上传时间:2023-07-21
- 格式:DOCX
- 页数:18
- 大小:26.84KB
《圆柱的表面积》教学反思.docx
《《圆柱的表面积》教学反思.docx》由会员分享,可在线阅读,更多相关《《圆柱的表面积》教学反思.docx(18页珍藏版)》请在冰豆网上搜索。
《圆柱的表面积》教学反思
《圆柱的表面积》教学反思
《圆柱的表面积》教学反思1
1、抓住特征,建立表象。
之前学生已经学习了长方体和正方体的表面积,学生对表面积的概念并不陌生。
讲授圆柱的表面积时,重点是通过圆柱展开图,让学生理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的,这样真正建立圆柱的表面积的表象。
2、抓住本质,理清思路。
圆柱的表面积包括一个侧面和两个底面。
计算圆柱的侧面积时,要用圆柱的底面周长乘高,而圆柱的底面积则需用到圆的面积公式。
在同一题里,周长公式与面积公式混淆也是计算圆柱表面积出错的原因之一。
怎样能更好地理清思路,灵活地进行计算呢?
我认为,尽量将复杂的问题简单化,以不变应万变。
即圆柱的侧面展开图是一个长方形,计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。
当然,涉及解决具体的问题,我们就要联系实际,具体问题具体对待。
让学生在明算理的基础上掌握具体算法。
《圆柱的表面积》教学反思2
一、创设情境,悬念导入。
上课铃响了,教师戴着厨师帽进教室,并设下悬念:
做这样一顶厨师帽需要准备多少面料?
板书课题:
圆柱的表面积
二、合作探究,发现方法。
1、圆柱的表面积包括哪些面的面积?
2、研究圆柱的侧面积。
(1)大家猜测一下,圆柱的侧面展开来可能会是什么样的?
(2)学生想办法亲自验证。
(学生通过动手剪、拆课前准备的圆柱体,发现侧面展开有的是长方形、有的是正文形、有的是平行四边形,还有的可能是不规则图形。
)
师问:
①剪、拆的过程中你有什么发现?
②长方形的长当于什么,宽相当于什么?
③你能把展开的平行四边形想办法变成长方形吗?
不规则图形呢?
(3)推导圆柱体侧面积的计算公式:
通过学生动手操作、观察比较得出,因为:
长方形的面积=长×宽
所以:
圆柱的侧面积=底面周长×高
3、明确圆柱的表面积的计算方法。
师生共同展示圆柱的表面积展开图,问:
现在你会求圆柱的表面积吗?
板书:
圆柱的表面积=圆柱的侧面积+两个底面的面积
三、实际应用
现在你能求出做这样一顶厨师帽需要多少面料吗?
出示例4:
一顶圆柱形的厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?
(得数保留整十平方厘米)
1、引导:
①求需要用多少面料,实际是求什么?
②这个帽子的表面积的是什么?
2、学生同桌讨论,列式计算,师巡视指导。
3、汇报计算情况。
板书:
帽子的侧面积:
3.14×20×28=1758.4(cm2)
帽子的底面积:
3.14×(20÷2)2=314(cm2)
需要用面料:
1758.4+314=20__.4≈20__(cm2)
答:
需用20__cm2的面料。
四、巩固练习:
课本第14页“做一做”。
五、畅谈收获,总结升华:
这节课你有什么收获?
说说自己的表现。
六、作业:
课内:
练习二第5、7题;课外:
练习二第6、8题。
附:
板书设计
圆柱的表面积
长方形的面积=长×宽
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+两个底面的面积
例4:
一顶圆柱形的厨师帽,高28cm,冒顶直径20cm,做这样一顶帽子需要用多少面料?
(得数保留整十平方厘米)
帽子的侧面积:
3.14×20×28=1758.4cm2)
帽子的底面积:
3.14×(20÷2)2=314(cm2)
需要用面料:
1758.4+314=20__.4
≈20__(cm2)答:
需用20__cm2的面料。
《圆柱的表面积》教学反思3
本节课的教学,同学们学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。
主要体现在三个重视上:
1、重视学习内容的生活性
数学________于生活,生活中到处有数学。
从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的有效方法。
在第一环节中,教师就创设了“饮料罐”情景,你想学什么?
让学生自己提出问题,激发了学生创造的愿望。
第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。
2、重视学习主体的创造性
著名数学家、教育家波利亚指出:
“学习任何知识的最佳途径是自己去发现。
”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。
学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。
本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。
3、重视学习过程的实践性
创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。
本节课的第二环节让学生在动手操作中发现圆柱侧面展开的三种情形,在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。
实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
《圆柱的表面积》教学反思4
圆柱的表面积由侧面积加上两个底面积组成,学生在做题过程中往往不能顺利地找出解决问题的关键,一道题,往往不会直接给出解决问题的所有必要条件,在给出一些条件的同时,往往隐藏了一些,老师在教学的过程中,就是要引导学去”刨“出隐藏着的一些信息,例如一个圆柱体知道底面周长和高,怎样求出表面积,要求表面积,关键是求出两个底面积,知道底面周长求底面积,两个量之间的类似点在于都要用到圆周率,知道底面周长,可求出直径或半径,学生的思维症结在于不会联系起来思考,为了突破这一难题,我作了多方面的努力,取得一些效果,但仍有一些人不明白,为此,我认为,应该把圆柱的各个部分再次拆开来,重点在干剖析圆的面积与周长之间的关当我一个人的时候,手里拿着手机,浏览一些页,看看电视上的新闻,打打篮球,看看自己喜欢的书籍…当我一个人的时候,睡睡懒觉,洗洗衣服,洗洗澡,呆呆地看大山,看看天空…当我一个人的时候,给远方的母亲打个电话,和朋友在电话上互相调侃,在上看看朋友、同学的动态…当我一个人的时候,我能够让自己的心灵插上翅膀,自由的飞翔,当我一个人的时候,我总能收获几许温馨与甜蜜,当我一个人的时候,也许,远方的你,也正在一个人享受着那难得的宁静与幸福。
面积与周长之间的相同点在于,都要用到圆周率和半径去计算,知道周长可求半径,知道半径可求面积,在这里,我对学生的引导不到位,这是我的不足之处。
《圆柱的表面积》教学反思5
教学《圆柱的表面积》重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。
在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,思维训练为主线”的原则,筛选了圆柱表面积的计算方法和灵活应用为关键要素,搭建了多向度、多角度的学生合作平台,让学生在玩中学,学中玩,以游戏闯关的形式愉悦地完成本课教学。
课下回顾整节课的教学同时又和同年组的老师进行了交流,反思如下:
一、激情导课,激发学生的学习能动性。
复习开始前,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?
”就在学生们的猜测下,我拿出了课前藏好的圆柱。
我继续发问“你们认识它吗,是怎样认识的?
你们还想知道它的什么?
”由此展开圆柱的表面展开图。
复习引入——提出长方体、正方体的表面积,导出圆柱的表面积的意义。
二、探究新知,搭建平台经历知识形成的过程。
本课教学分为三部分:
第一部分是教学圆柱表面积的概念和侧面积的计算。
探究新知时,让学生动手操作、观察、发现,通过小组的讨论、交流,呈现出不同圆柱的侧面展开图体现多向度、多角度的合作平台,从而进一步明确圆柱侧面沿高打开是长方形,长方形的长相当于圆柱的底面周长,宽相当于圆柱的高。
由此导出圆柱的侧面积的计算方法。
在学生学会计算圆柱的侧面积以后,设疑:
你会计算这圆柱的表面积吗?
(第二部分开始)学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。
在练习表面积的实际应用时,又很自然地进行了“进一法”的教学。
最后一部分是练习阶段,以生活中的圆柱物体为例求出所需要的材料,要求学生说出要计算哪几个面,体现了“数学________于生活,数学应用于生活”的思想。
三、把握重、难点,创造性的使用教材和教学资源。
“圆柱表面积”这节课教学内容主要包括:
圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。
教材安排了三道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“进一法”取似值作为一个知识点。
在突破侧面积的计算方法这个难点时,精心设疑:
圆柱的侧面是个曲面,怎样计算它的面积呢?
让学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
在学生学会计算圆柱的底面积和侧面积以后,设疑:
你会计算这圆柱的表面积吗?
学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。
在练习表面积的实际应用时又体现了数学与生活的联系。
四、教学方法:
直观演示和实践操作相结合,呈现梯度形态。
在侧面积和表面积的计算环节中,我首先让学生摸一摸,自己观察、发现,形成圆柱表面积的表象。
认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。
教学侧面积的计算方法时,让学生以小组为单位,通过观察、操作推导出侧面积的计算方法。
调集多种要素让学生亲身实践了,记忆一定就会更加深刻。
这样充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式,并运用幻灯片辅助教学,有利于学生对知识的理解及掌握。
当然,在这节课的教学中,还存在着一些不足:
首先,实践操作展示得不够。
在动手探索圆柱侧面积的计算方法时,小部分同学的学具较小,展示时没有达到预期的效果。
。
其次,学生的计算能力有待加强,在计算圆柱的侧面积和表面积时显得费时费力。
在以后的教学中,我还应该多吸取经验,弥补自己的不足,提升自己的教学能力。
《圆柱的表面积》教学反思6
圆柱体的表面积计算是一个难点。
本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。
但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。
不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。
接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的不理解,需要通过反复练习才能达到一定的程度。
[圆柱的侧面积和表面积]
沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为平面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的高h.这个矩形的面积就是圆柱的侧面积.由此可知,圆柱的侧面积等于底面的周长乘以高,即
S圆柱侧=ch=2rh(r为圆柱底面的半径)
圆柱的侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积).即
S圆柱表=S圆柱侧+2S底=2r2
教学时,要把圆柱的侧面积和表面积区别开来.可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式.
学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难.可以多观察实物、模型,增加感性认识.也可以给出一些计算式子,要学生说明是求圆柱体的哪几个面的面积.例如:
S=2rh,是求();S=2r2,是求();S=2r2,是求().
《圆柱的侧面积和表面积》教学片段
在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。
我想,关于圆柱的表面积也会存在这样的问题吧。
为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?
因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:
求铅笔涂漆部分的面积是求()的面积;
压路机滚动一周压过多大路面是求()的面积;
求一个水桶用多少材料是求()的面积;
求汽油桶用多少铁皮是求()的面积。
《圆柱的表面积》教学反思7
根据学校安排,上了《圆柱的表面积》这节课。
虽然比较顺利的完成了课堂教学,基本能达成教学目标任务,学生的学习效果也不错。
但细细想来,也有不少需要改进的地方。
1、课件的制作还需要修改。
在巩固练习侧面积的计算中的第一题,圆柱的底面周长是18厘米,高是10厘米,求侧面积是没问题,但到了接下来的求表面积时,18除以3。
14、再除以2,就得不到整数,给学生的计算带来麻烦,是自己备课不精细,考虑不全面造成的,需要修改,改成18。
84厘米。
2、在讲完例四后,安排的练习中,本来设计一组三个练习题,一个像例四,要求表面积但只需求一个底面与侧面积之和;一个是求表面积,但是需要侧面积与两个底面积之和;另一个是求烟囱的面积——即只需求侧面积。
是让学生明白,解决实际问题时,虽说要求圆柱的表面积,但要根据具体情况具体分析,不能死套公式。
3、课堂总结时,应放给学生自己总结本节的的学习收获,不要老师代劳。
下一次上课,尽量注意以上几个问题,争取更好一点。
《圆柱的表面积》教学反思8
圆柱的表面积教学,关键在于通过圆柱的侧面展开图推导出圆柱的侧面积公式。
因此本节课的教学,从始至终贯穿着以学生为主体,教师为主导,训练思维为主线的原则,在各个环节中让学生自己去解决,让学生在动手操作、合作探究中学习。
一、把握重点,突破难点,合理利用教材。
圆柱表面积这节课教学内容主要包括:
圆柱的侧面积、表面积的计算,以及用进一法取近似值。
教材安排了三道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用近一法取似值作为一个知识点。
再结合学生的实际,巧妙的把他们联系成一个整体,做到收中有放,放中有收。
二、直观演示和实践操作相结合。
在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。
认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。
然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。
长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,然后我又启发学生:
圆柱的侧面展开图除了长方形,还可能是什么图形?
发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。
这时有的学生会说,沿高展开后还可能得到正方形,这是一种特殊现象。
借此我又让学生自己进行操作、尝试,得出了与书上不一样的结果。
这样做,不仅启发了他们的思维,又培养了他们的创新意识。
三、习题设计。
在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。
判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。
当然,在这节课的教学中,还存在着一些不足。
如:
学生对圆周长和面积的计算不够熟练;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。
在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
《圆柱的表面积》教学反思9
一节课讲得再好,关键是学生学到了什么。
今天我在讲圆柱的表面积时,先是让学生想像圆柱是由哪些部分构成的,通过对圆柱结构的了解,让学生明白在计算圆柱表面积时,我们一定要看清题目所提供的信息,如果是一个实物图,这个还好些,我们只要根据题目所提供的实物图进行解答。
如果题目所提供的信息是一个生活中的实物,我们在解决时就要结合实物实际情况进行解析。
如油桶的制作它就是要算圆柱的侧面积与两个底的面积。
再如水桶的制作,就不再是在侧面积的基础上加上两个底面积,而是只要加上一个底面积即可。
如给一个大厅里的圆柱子刷涂料,这是要算的面积则是这个圆柱的侧面积。
所以在讲解时,我放手让学生从生活中找不同的圆柱体,从而让学生了解生活,了解数学。
本节课还有一个重点,那就是让学生明白圆柱体展开后,它的侧面是一个长方形或一个正方形,一般而言,展开的长方形的长是与圆柱底面的周长是相等的,否则这个水桶就会漏水。
这个知识点是本节课的重点,同时也是学生以后作业中常出错的“闪光点”。
所以本节课在教学过程中,我有意让学生通过圆柱体进行实际操作,让学生从内心深处明白,圆柱底面周长就是展开后长方形的长。
虽然今天学生作业只是套用公式,学生没有什么失误,但在拓展题,还是暴露出灵性不足。
希望在以后练习中还需进一步强化,从而达到熟能生巧的地步。
《圆柱的表面积》教学反思10
圆柱体的表面积计算是一个难点。
本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。
但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。
不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。
接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的不理解,需要通过反复练习才能达到一定的程度。
圆柱的侧面积和表面积:
沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为平面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的高h。
这个矩形的面积就是圆柱的侧面积。
由此可知,圆柱的侧面积等于底面的周长乘以高,即
S圆柱侧=ch=2πrh(r为圆柱底面的半径),圆柱的侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积)。
即S圆柱表=S圆柱侧+2S底=2πrh+2πr2。
教学时,要把圆柱的侧面积和表面积区别开来。
可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式。
学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难。
可以多观察实物、模型,增加感性认识。
也可以给出一些计算式子,要学生说明是求圆柱体的哪几个面的面积。
例如:
S=2πrh,是求();S=2πrh+πr2,是求();S=2πrh+2πr2,是求()。
《圆柱的侧面积和表面积》教学片段:
在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。
我想,关于圆柱的表面积也会存在这样的问题吧。
为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?
因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:
1、求铅笔涂漆部分的面积是求()的面积。
2、压路机滚动一周压过多大路面是求()的面积。
3、求一个水桶用多少材料是求()的面积。
4、求汽油桶用多少铁皮是求()的面积。
《圆柱的表面积》教学反思11
因为疫情迟迟没有好转,离开学时间还是遥遥无期,所以培育小学秉着“停课不停学”的理念,开始了课教学。
我今天教学的内容是人教版六年级下册《圆柱的表面积》,本节课的教学难点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,重点是灵活运用侧面积、表面积的有关知识解决实际问题。
本节课的教学,从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中让学生自己去解决,让学生在动手操作、合作探究中学习。
一、激情导课,激发学生的求知欲。
复习开始时,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?
”就在学生们的猜测下,我拿出了课前藏好的圆柱。
我继续发问“谁能给大家介绍一下这位新朋友?
你们还想知道它的什么?
”然后,让学生动手摸一摸手中的圆柱体,“谁能告诉大家你摸到了什么?
”形成圆柱表面积的表象,从而很轻松的得出:
圆柱的表面积等于圆柱的侧面积和两个底面面积之和。
二、把握重点,突破难点,合理利用教材。
“圆柱表面积”这节课教学内容主要包括:
圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。
教材安排了两道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“近一法”取似值作为一个知识点。
再结合学生的实际,巧妙的把他们联系成一个整体,做到收中有放,放中有收。
三、教学方法上,采用直观演示和实践操作相结合。
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。
在教学侧面积的计算时,精心设疑:
圆柱的侧面是个曲面,怎样计算它的面积呢?
想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?
在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作。
让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。
长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。
再让学生以小组为单位,通过看一看、摸一摸,自己观察、发现,思考怎样求圆柱体的表面积?
讨论:
求圆柱体的表面积需要知道哪些数据?
从而得出圆柱体表面积的计算公式。
充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式,并运用幻灯片辅助教学,有利于学生对知识的理解及掌握。
四、练习题的设计上由易到难,讲练结合。
在练习题的设计中,遵循了从易到难的原则,先是已知周长、半径和直径求圆柱的侧面积,在此基础上再想一想已知这三个条件怎样求出圆柱的表面积。
采用分步口答的方法,让学生说出自己的想法,从而达到熟练掌握求圆柱的表面积的计算方法。
例4主动放手让学生独立解答,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的`联系。
当然,在这节课的教学中,还存在着一些不足。
如:
学生对圆周长和面积的计算不够熟练;另外,在练习题的设计上都是只列式不计算的方法,没有让学生真正计算出侧面积和表面积;小组合作的初衷是好的,但在实际教学中却没有达到预期的要求。
在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
《圆柱的表面积》教学反思12
《圆柱的表面积》教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。
在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,让学生在动手操作、合作探究中学习。
将圆柱侧面积计算方法的推导作为教学难点来突破,将圆柱的表面积的计算作为重点来
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆柱的表面积 圆柱 表面积 教学 反思
