配套K12人教版五年级数学下册第三单元长方体和正方体教案.docx
- 文档编号:29185978
- 上传时间:2023-07-21
- 格式:DOCX
- 页数:17
- 大小:24.58KB
配套K12人教版五年级数学下册第三单元长方体和正方体教案.docx
《配套K12人教版五年级数学下册第三单元长方体和正方体教案.docx》由会员分享,可在线阅读,更多相关《配套K12人教版五年级数学下册第三单元长方体和正方体教案.docx(17页珍藏版)》请在冰豆网上搜索。
配套K12人教版五年级数学下册第三单元长方体和正方体教案
人教版五年级数学下册第三单元长方体和正方体教案
长方体和正方体的表面积
课时:
教学内容:
P33-37
教学目的:
使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。
.在探索学习中建立初步的空间观念,发展初步合情推理能力量。
培养学生的动手操作能力和共同研究问题的习惯。
通过亲身参与探索实践活动,去获得积极的成功的情感体验。
体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。
教学重点:
长方体表面积计算的基本思路和方法。
教学难点:
根据长方体的长、宽、高,确定每个面的长、宽是多少。
教具学具:
剪刀、长方体盒子、尺、硬纸板、火柴盒。
教学过程:
一、创设情境
同学们,老师今天给大家带来一件礼物,想把它送给这节课最爱动脑筋,最爱发言的同学,老师觉得这件礼物的盒子不够精美,你们能不能给老师出出主意?
想知道这张包装纸的大小吗?
通过今天的学习,大家就会明白。
二、自主探索
分组操作,探索长方体的表面积的含义、并建立它们的联系。
同学们,现在请大家利用桌面上的长方体、剪刀,看看把一个长方体或正方体的纸盒展开是什么形状的呢?
请在展开图中,分别用上下前后左右标明6个面。
观察长方体展开图,哪些面的面积相等?
每个面的长和宽与长方体的长、宽、高有什么关系?
学生分小组合作操作。
三、各小组学生交流汇报结果。
可能有以下几种:
汇报一:
把长方体纸盒6个面剪开,并把相对的面摆放在一起组成三大部分。
要求出这个长方体的表面积,只要把这三部分面积相加,部分面积为"长×宽×2",第二部分面积分为"宽×高×2",第三部分面积为"长×高×2",得出:
长方体的表面积=长×宽×2+宽×高×2+长×高×2。
学生汇报后,演示这一种推导思维的全过程。
板书:
长x宽×2+宽×高×2+长×高×2。
汇报二:
把长方体纸盒剪成面积相等的两大部分。
只要把这两大部分的面积相加,就可以求出这个长方体的表面积,大部分面积为
"长×宽+长×高+宽×高",而第二大部分面积与大部分面积相等,只要把大部分面积乘2,得出长方体的表面积=×2。
师:
同学们的这种方法真不错,请大家看屏幕演示。
板书:
×2。
汇报三:
把长方体纸盒的六个面剪成上下面和四周两大部分。
只要把这两大部分相加就可以求出这个长方体的表面积,大部分面积为×高+长×宽×2,并说明"长×2+宽×2"可以表示这个长方体的底面周长。
师:
这种方法也很好,请同学看演示。
板书:
底面周长×高+长×宽×2
师:
长方体或正方体6个面的总面积,叫做它的表面积。
在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。
四、实践运用
做一个微波炉的包装箱,至少要用多少平方米的硬纸板?
说明"至少"的意思。
独立计算,说说你是怎么计算的?
给出课前长方体纸盒的长、宽、高的数据,让学生计算包装这个盒子至少用多少平方分米的包装纸。
一个正方体礼品盒,棱长1.2分米,包装这个礼品盒至少用多少平方分米的包装纸?
想一想怎样计算正方体的表面积呢?
选择题。
1.下图长方体的表面积是
①×2
②×2
③×2
单位:
厘米
一种长方体硬纸盒,底面是边长2分米的正方形,高4分米,现在要在外面全部涂上油漆,油漆面积有多大?
①×2
②2×2×4+2×4×2
③2×2×2+2×4×4
五、拓展创新
每个小组的桌面上都有两个火柴盒,现在要将这两个火柴盒包装起来,请大家给它设计一个包装方案,并在小组说一说,你为什么这样包装?
学生通过操作、合作、讨论设计出许多包装方案,并说出自己设计包装方案的想法。
有的小组同学把面积最大的两个面重叠起来,有的认为这样包装纸装用得最少,而有的则认为有时不单要考虑包装纸的大小,也要考虑包装是否美观、大方,也有的--------
六、评价体验今天你运用了什么学习方法?
学习上有什么收获?
你感受最深是什么?
学生之间互相评价。
七、作业:
看书
实际测量
长方体是一种很常见的物体,在我们的周围随时都可以看到长方体,同学们在教室内找一个长方体并求出它的表面积。
学生交流测量和计算的情况。
第二课时:
教学内容:
练习六
教学目标:
复习长正方体表面积计算,应用这些知识解决生活问题。
教学重点:
表面积的计算。
教学难点:
表面积知识在实际中的应用。
教学过程:
一、复习检查:
长正方体的特征是什么?
什么是长正方体的表面积?
怎样计算表面积?
二、基本练习:
正方体的棱长是8分米,这个正方体的棱长之和是分米,表面积是。
一个长方体长2米,宽4分米,高4厘米,这个长方体棱长之和是分米,表面积是平方分米。
一个长方体的纸包装箱,长30厘米,宽和高都是20厘米。
做10个这样的包装箱,需要纸板多少平方厘米?
合多少平方分米?
你想怎样做这道题?
独立做。
有一个长方体的铁罩,长6分米,宽4.5分米,高4分米。
做一个这样的铁罩至少需要多少平方分米?
铁罩有几个面?
计算做一个这样的铁罩至少需要多少平方分米?
也就是计算几个面的总面积?
哪五个面?
独立计算,小组交流方法。
方法一:
直接计算前后、左右、上面的面积和
方法二:
计算六个面的表面积减去下面
师:
计算长正方体的表面积一般需要计算六个面的总面积,但像这样有时要跟据实际需要计算它的表面积。
三、解决实际问题:
刷油漆的面积一共有多少平方分米?
一个长方体的大衣柜,长0.9米,宽0.5米,高1.8米,在它的正面和左右两面刷油漆,刷油漆的面积至少是多少平方米?
一个长方体罐头盒,长12厘米,宽8厘米,高6厘米。
在它的四周贴上商标纸,这张商标纸的面积至少有多少平方厘米?
一个游泳池,长50米,宽40米,平均深1.5米.在池底和四壁抹上一层水泥,抹水泥的面积至少是多少平方米?
如果每平方米用水泥4.5千克,共需要水泥多少千克?
装修一间居室,长和宽都是3.6米,高是2.5米,门窗面积10平方米。
在居室四壁和顶棚都贴壁布,至少需要多少平方米?
四、通过今天的练习,你有收获吗?
五、作业
课后反思:
3、长方体和正方体体积
课时:
教学目标:
理解体积的意义,认识常用的体积单位:
立方米、立方分米、立方厘米,培养初步的空间观念。
知道计量一个物体的体积有多大,要看它包含多少个体积单位。
教学重点:
建立体积概念。
认识体积单位。
教学难点:
建立体积概念。
教学用具:
教学过程:
一、导入:
你们都听说过乌鸦喝水的故事吧,聪明的乌鸦是怎么喝到水的?
这其中有什么道理?
二、新授:
体积的意义。
准备:
我们也来做一个实验,取两个同样大小的玻璃杯。
先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把个杯子里的水倒到第二个杯子里,会出现什么情况?
为什么?
这说明了什么?
每一个物体都占有一定的空间。
下面的电视机、影碟机和手机,哪个所占的空间大?
〔3〕、启发学生概括:
物体所占空间的大小叫做物体的体积。
上面三个物体,哪个体积最大?
哪个体积最小?
比较:
用学生手中的文具比。
谁的体积大?
谁的体积小?
师:
教室是一个较大的空间,课桌、讲台、同学、老师等占教室空间的一部分。
整个学校是一个大空间,教师、办公室、操场、花池、领操台、旗座等都占有一定的空间,既有自己的体积。
而整个宇宙是一个大空间,地球只是宇宙空间的一部分,而地球上的山、川、河流、一切建筑物、人等占地球的一部分。
体积单位:
讲:
测量长度要用长度单位,测量面积要用面积单位,测量体积要用体积单位。
认识体积单位:
常用的体积单位有:
立方米、立方分米、立方厘米。
可以分别写成
认识立方厘米:
出示:
棱长是1厘米的正方体,量一量它的棱长是多少?
说明:
它的体积是1立方厘米。
谁的体积近似的接近1立方厘米?
认识立方分米:
粉笔盒的体积接近于1立方分米。
认识立方米:
①出示1立方米的棱长的教具。
观察后总结:
边长是1米的正方体的体积是1立方米。
②认识1立方米的空间大小。
1立方米水约可以装满500个暖瓶。
1立方米的木材约可以做课桌50张。
小结:
常用的体积单位有哪些?
哪个体积单位大?
哪个体积单位小?
体积单位的用途是什么?
练一练:
选择恰当的单位:
橡皮的体积用,火车的体积用,书包的体积用。
比一比:
到现在为止,我们都了学哪些测量单位?
长度、面积、体积三种单位的区别:
练习:
①说一说:
测量篮球场的大小用单位。
测量学校旗杆的高度用单位
测量一只木箱的体积要用单位。
②、一个正方体的棱长是1,表面积是,体积是。
③、判断:
一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。
体积初步认识:
①决定体积大小,是看它含有体积单位的个数。
A、演示:
用棱长1厘米的4个正方体,拼一个长方体,说出它的体积是多少?
B、说出下面物体的体积
c、摆一摆:
请你也摆出一个体积是3立方厘米的物体。
摆出体积是4立方厘米的物体。
D、小结:
怎样知道一个长方体的体积是多少?
同一个体积数,可以摆出不同的形状。
②动手摆一摆:
请大家用手中的小正方体拼一个体积是8立方厘米的长方体。
可以怎么摆?
三、总结:
这节课我们学习了体积的意义和体积单位。
你有什么收获?
四、作业:
课后反思:
第二课时:
教学内容:
推导长正方体的体积计算方法
教学目标:
1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。
2、培养学生空间和空间想象能力。
教学重点:
长正方体体积公式的推导。
教学难点:
运用公式计算。
教学用具:
1立方厘米学具。
教学过程:
一、复习:
1、什么叫物体的体积?
2、常用的体积单位有哪些?
3、什么是1立方厘米、1立方分米、1立方米?
二、导入新课:
1、导入:
我们知道了每个物体都有一定的体积,我们也知道可以利用数体积单位的方法计算物体的体积。
要知道老师手中的这个长方体和正方体的体积?
你有什么办法?
的小正方体后数一数的方法。
)
说明:
用拼或切的方法看它有多少个体积单位。
但是在实际生活中,有许多物体是切不开或不能切的,如:
冰箱,电视机等,怎样计算它的体积呢?
他们的体积会和什么有关系呢?
这节课我们就来研究长方体和正方体的体积。
2、新课:
请同学们任意取出几个1立方厘米的正方体在小组里合作摆出一个长方体,边摆边想:
你们是怎么摆的?
你们摆出的长方体体积是多少?
板书学生的:
体积
每排个数排数
排数
层数
4
4
1
1
8
4
2
1
24
4
3
2
观察:
每排个数、排数、层数与体积有什么关系?
板书:
体积=每排个数排数排数×层数
每排个数、排数、层数相当于长方体的什么?
因为每一个小正方体的棱长是1厘米,所以,每排摆几个小正方体,长正好是几厘米;摆几排,宽正好是几厘米;摆几层,高也正好是几厘米。
如何计算长方体的体积?
板书:
长方体体积=长×宽×高
字母公式:
V=abh
三、练习:
1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?
2、导出正方体体积公式:
根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?
正方体体积=棱长×棱长×棱长 V=aaa=a3 读作a的立方
一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?
看表计算:
长宽高体积
4
1.5d0.8d0.5d
8c4.53c
正方体棱长体积
0.9
4d
6c
请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?
长方体体积=长×宽×高
提问:
长方体的长、宽、高不同,体积相同这是为什么?
四、小结:
这节课学会了什么?
怎样计算长、正方体的体积?
计算长方体和正方体的体积有没有其他的方法?
这个问题我们下节课研究。
四、作业:
第三课时:
教学内容:
教学目标:
在理解了长正方体体积公式,能运用公式进行计算的基础上,进一步研究求长正方体体积的其它计算公式。
进一步培养学生空间观念和空间想象能力。
教学重点:
计算长正方体体积的其它公式。
逆向思维的题可以用方程方法解。
教学难点:
几何知识与一般应用题的综合题。
教学过程:
一、复习检查:
如何计算长正方体的体积?
及字母公式
长方体的体积=长×宽×高正方体体积=棱长×棱长×棱长
二、新授:
长方体或正方体底面的面积叫做底面积。
长方体和正方体的底面积怎样求呢?
长方体的体积=长×宽×高正方体体积=棱长×棱长×棱长
底面积底面积
长正方体的体积可以这样来计算:
长正方体的体积=底面积×高V=sh
三、巩固练习:
长方体的底面积是24平方厘米,高是5厘米。
它的体积是多少?
一根长方体木料,长5厘米,横截面的面积是0.06平方厘米。
这根木料的体积是多少?
理解横截面积的含义,体会长方体不同放置,说法各不相同。
出示另一种计算方法:
长方体体积=横截面积×长
家具厂订购500根方木,每根方木横截面的面积是24平方分米,长3米。
这根木料一共是多少平方米?
理解面积单位和长度单位要一致。
但不可能相同。
练一练:
用方程法。
一块长方体的木板,体积是90立方分米。
这块木板的长是60分米,宽是3分米。
这块木板的厚度是多少分米?
一根长方体水泥柱,体积是1立方米,高是4米,它的底面积是多少?
学校要修长50米,宽42米,的长方形操场。
先铺10厘米的三合土,再铺5厘米的煤渣。
需要三合土和煤渣各多少立方米?
有一块棱长是10厘米的正方体钢坯,锻造成宽和高都是5厘米的长方体钢材,求长方体钢材的长。
用15根规格完全相同的木板堆成一个体积是3.6立方米的长方体。
已知每根木板宽0.3米,厚0.2米,求每根木板的长。
四、小结:
今天,我们又学了哪些知识?
你有什么收获?
课后反思:
第四课时:
教学内容:
体积单位的进率
教学目标:
在认识体积单位,知道体积单位与长度单位的联系和区别基础上,学习掌握体积单位间的进率与化、聚方法。
学习计算重量的解答方法。
教学重点:
体积单位的进率。
计算物体的重量。
教学难点:
体积单位的进率的化聚。
教学过程:
一、复习检查:
计算体积用单位,常用的体积单位有哪些?
填空:
厘米1平方厘米1立方厘米
单位单位单位
说一说:
计算长度用单位,计算面积用单位,计算体积用单位。
米=分米,1平方米=平方分米
分米=厘米1平方分米=平方厘米
二、新课:
体积单位之间的进率:
棱长是1分米的正方体,体积是1×1×1=1立方分米。
想一想它的体积是多少立方厘米?
棱长改用厘米作单位:
体积是10×10×10=1000立方厘米
底面积是1平方分米,也就是100平方厘米,利用体积的计算公式100×10=1000平方厘米
通过刚才的计算你能告诉大家什么?
1立方分米=1000立方厘米
根据上面的方法,你能推算出1平方米等于多少平方分米吗?
棱长是1分米的正方体,体积是1×1×1=1立方分米
棱长改用厘米作单位:
体积是10×10×10=1000立方厘米
立方米=1000立方分米
小结:
相邻的体积单位之间的进率是。
练习:
立方米=立方分米
5立方米=立方分米
00立方分米=立方米
00立方厘米=立方分米
6立方分米=立方厘米
填写比较表
单位名称相邻两个单位之间的进率
长度米厘米分米=10
面积=100
体积=1000
0×30×40=
一块长方体的钢板,长2.5米,长1.6米,厚0.02米。
它的体积是多少立方分米?
每立方分米的钢重7.8千克。
这块钢重多少千克?
钢板的体积:
2.5×1.6×0.02=0.080.08立方米=80立方分米
钢板的质量:
7.8×80=624
答:
这块钢板的体积是80立方分米,质量是624千克。
求物体的质量公式为:
比重×体积=质量注意前后单位是否统一。
三、巩固练习:
一块正方体的钢板,棱长是20厘米,每立方分米的钢重8.9千克。
这块钢重多少千克?
0厘米=2分米2×2×2=88.9×8=71.2
一根长方体钢材,长4.8米,横截面是一个边长5厘米的正方形。
每立方分米钢重7.8千克,这根钢材重多少千克?
一块长方体铁板重468千克,又知铁板长2米,宽1.5米,厚2厘米。
每立方分米的铁板重多少千克?
四、作业:
课后反思:
第五课时:
教学内容:
容积
教学目标:
1、知道容积的意义。
2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。
3、会计算物体的容积。
教学重点:
1、容积的概念。
2、容积与体积的关系。
教学难点:
教具:
量筒和量杯、不同的饮料瓶、纸杯
教学过程:
一、复习检查:
说出长正方体体积计算公式。
二、准备:
把泥放入一个长方体的小木盒中,然后扣出来,量一量泥块的长、宽、高。
计算泥块的体积。
这个长方体小木盒所能容纳物体的体积是。
三、新授:
1、认识容积及容积单位:
箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。
通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。
计量容积,一般就用体积单位。
但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。
演示:
体积单位与容积单位的关系。
说一说,在生活中哪些物品上标有升或毫升。
升和毫升有什么关系呢?
教具演示。
①1升=1000毫升
将1升的水倒入1立方分米的容器里。
小结:
1升=1立方分米
②1升=1立方分米
000毫升1000立方厘米
毫升=1立方厘米
练一练:
8L=L3500L=L15000c3=L=L
5d3=L
小组活动:
将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?
估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。
2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但是要从容器的里面量长、宽、高。
例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。
这个油箱可以装汽油多少升?
×4×2=4040立方分米=40升
答:
这个油箱可以装汽油40升。
做一做:
一个正方体油箱,从里面量棱长是1.4米。
这个油箱装油有多少升?
小结:
计算容积的步骤是什么?
我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。
那有些不规则的物体怎么计算它的体积呢?
出示一个西红柿,谁有办法计算它的体积?
小组设计方案:
四、巩固练习:
1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?
2、一个长方体油箱的容积是20升。
这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?
3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?
4、提高题:
p55、16
五、作业:
课后反思:
单元复习
课时:
复习目标:
使学生对长正方体的有关概念掌握得更加牢固。
进一步掌握长正方体的表面积和体积的计算。
体积单位的进率。
复习重点:
长正方体的表面积和体积的计算。
体积单位的进率。
复习用具:
长正方体的学具。
复习过程:
一、复习单元的主要内容:
问:
看到课题你能想到到哪些知识?
特征及关系:
长方体正方体
顶点8个8个
面6个6个面都相等
棱12条棱12条棱长度相等
正方体是特殊的长方体。
表面积:
怎样求长正方体的表面积?
体积和容积:
体积单位:
立方米、立方分米、立方厘米。
容积单位:
一般用体积单位,计量液体时用:
升、毫升。
体积和容积的计算:
二、练习:
填空:
表面积和体积的意义不同,表面积是物体的大小,体积是物体所占的大小。
表面积和体积所用的计量单位不同,计量表面积用单位。
常用的单位有、、;相邻的两个面积单位间的进率是。
计量物体体积用单位,常用的有、、;相邻的体积单位间的进率是。
表面积和体积的计算方法不同。
计算正方体的表面积是;计算正方体的体积是或。
计算长方体的表面是;计算长方体的体积是或。
一个正方体,棱长是8分米,这个正方体的棱场之和是;表面积是;体积。
一个长方体,长2米,宽5分米,高0.4分米。
这个长方体的表面积是;体积是。
一根长方体材料,宽3分米,厚2厘米,体积是0.12立方米。
这根木材的长是,放在地上占地面积最大是。
判断:
长方体中可以有两个相同的面是正方形。
长方体中相对的4条棱长度相等。
正方体的6个面是完全一样的正方形。
长方体相邻的两个面一定不完全相同。
用同样大小的小正方体拼成一个大正方体,最少要用8个这样的正方体。
长方体中有四个面是完全一样的长方形。
当正方体的棱长是6厘米时,它的表面积和体积就相同。
选择正确答案:
3.05立方米=
A305立方分米B3050立方分米c30.5立方分米
4560立方分米=
A、4.56升B、4560升c、4.56立方米
三、作业:
第二课时:
复习目标:
通过动手操作,使学生对长方体和正方体的面积和体积等知识得以巩固。
培养学生运用所学知识解决实际问题的能力,进一步培养学生的空间观念。
复习重点:
通过动手操作,使学生对长方体和正方体的面积和体积等知识得以巩固。
复习难点:
运用所学知识解决实际问题的能力,进一步培养学生的空间观念。
复习用具:
火柴盒,尺子,幻灯。
复习过程:
一、准备:
揭示课题:
今天我们上一节长正方体的表面积和体积的练习课。
拿出火柴盒,汇报侧量长宽高的结果。
外套:
长4.5厘米、宽3.5厘米、高1.5厘米
内盒:
长4.3厘米、宽3.4厘米、高1.4厘米
小组活动:
根据以上条件,想一想可以求什么
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 配套 K12 人教版五 年级 数学 下册 第三 单元 长方体 正方体 教案