六年级数学上总结OK.docx
- 文档编号:29133595
- 上传时间:2023-07-20
- 格式:DOCX
- 页数:14
- 大小:72.25KB
六年级数学上总结OK.docx
《六年级数学上总结OK.docx》由会员分享,可在线阅读,更多相关《六年级数学上总结OK.docx(14页珍藏版)》请在冰豆网上搜索。
六年级数学上总结OK
2016至2017人教版六年级上数学在知识点总结
第一章、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:
×5表示求5个
的和是多少?
2、分数乘分数是求一个数的几分之几是多少。
例如:
×
表示求
的
是多少?
(二)、分数乘法的计算法则:
1、分数与整数相乘:
分子与整数相乘的积做分子,分母不变。
(整数和分母约分)
2、分数与分数相乘:
用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、画线段图:
(1)两个量的关系:
画两条线段图;
(2)部分和整体的关系:
画一条线段图。
2、找单位“1”:
在分率句中分率的前面;或“占”、“是”、“比”的后面
3、求一个数的几倍:
一个数×几倍;求一个数的几分之几是多少:
一个数×
。
4、写数量关系式技巧:
(1)“的”相当于“×”“占”、“是”、“比”相当于“=”
(2)分率前是“的”:
单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思:
单位“1”的量×(1
分率)=分率对应量
第三章、分数除法
一、倒数
1、倒数的意义:
乘积是1的两个数互为倒数。
强调:
互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:
交换分子分母的位置。
(2)、求整数的倒数:
把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:
把带分数化为假分数,再求倒数。
(4)、求小数的倒数:
把小数化为分数,再求倒数。
3、1的倒数是1;0没有倒数。
因为1×1=1;0乘任何数都得0,
(分母不能为0)
4、对于任意数
,它的倒数为
;非零整数
的倒数为
;分数
的倒数是
;
5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
二、分数除法
1、分数除法的意义:
乘法:
因数×因数=积除法:
积÷一个因数=另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):
(1)、当除数大于1,商小于被除数;
(2)、当除数小于1(不等于0),商大于被除数;
(3)、当除数等于1,商等于被除数。
4、“
”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
三、分数除法解决问题
(未知单位“1”的量(用除法):
已知单位“1”的几分之几是多少,求单位“1”的量。
)
1、数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是“的”:
单位“1”的量×分率=分率对应量
(2)分率前是“多或少”的意思:
单位“1”的量×(1
分率)=分率对应量
2、解法:
(建议:
最好用方程解答)
(1)方程:
根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):
分率对应量÷对应分率=单位“1”的量
3、求一个数是另一个数的几分之几:
就一个数÷另一个数
4、求一个数比另一个数多(少)几分之几:
两个数的相差量÷单位“1”的量或:
①求多几分之几:
大数÷小数–1
②求少几分之几:
1-小数÷大数
总结:
分数乘除法(判断分数应用题中单位“1”)
【基本原则】
一、基本思路:
分数的意义,“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。
所以单位1的判定,就是看把谁平均分了,就把谁看作单位
1.谁的几分之几,谁就把谁看作单位1。
.如一台电视机降价
。
男生比女生多全班的
.把全班人数看作单位1。
.
2.在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:
六
(2)班男生比女生多12。
理解为男生比女生多女生的12,所以把女生人数为标准,看作单位“1”,
3.看在谁的基础上增加或减少,那个基础量就是单位“1”
例如,水结成冰后体积增加了
,把水看作单位“1”,冰融化成水后,体积减少了
。
把冰看作单位“1”
二、单位“1”的应用题:
单位1的量×分率=分率对应量分率对应量÷分率=单位1的量
我们在解决分数乘法应用题时,一般有两种类型:
求一个数的几分之分是多少?
我们确定这个数是单位“1”,然后用乘法计算,公式=单位“1”的量×几分之分,例子书上17的例1、做一做、还有练习四。
还有就是一个数比另一个数多(少)几分之分的应用题,一般“比”后面的数就是单位“1”,公式=单位“1”的量×(1+几分几分)或单位“1”的量×(1—几分几分)
例子:
甲数比乙数多3分之2,就是把乙数看作单位“1”,求 甲数的公式=乙数的量×(1+
);如果把多改成少,那公式=乙数的量×(1—
)。
例子:
甲数比乙数多3分之2,就是把乙数看作单位“1”,求 乙数的公式=甲数的量÷(1+
);如果把多改成少,那公式=乙数的量÷(1—
)。
怎么样画分数应用题的线段图
第一步、先认真审题,通过读题,找出题目中的单位“1”,画一条线段表示单位“1”,
并在单位上面标上具体的数字。
第二步:
根据已知条件画线段,一般都画在单位“1”那条线段上,也可以自己在下面画线段,但是一定要标上所对应的分率。
第三步:
在线段图上标上问题。
第四步:
利用线段图理解,可以列出算式,还可以利用线段图检查自己做的对不对。
例,说出下面各题是把谁看做单位“1”
(1)男生人数比女生人数多
,把 看作单位“1”。
(2)男生人数比女生人数多全班的
,把 看作单位“1”。
(3)水结成冰后体积增加了
,把 看作单位“1”。
(4)冰融化成水后,体积减少了
。
把 看作单位“1”。
(5)今年的产量相当于去年的
,把 看作单位“1”。
第二章、位置与方向
一、确定物体位置的方法:
1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)
二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:
1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
第四章、比
1、比的意义:
两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
3、区分比和比值
比:
表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:
相当于商,是一个数,可以是整数,分数,也可以是小数。
4、 比和除法、分数的联系:
比
前项
比号“:
”
后项
比值
除法
被除数
除号“÷”
除数
商
分数
分子
分数线“—”
分母
分数值
5、比和除法、分数的区别:
除法是一种运算,分数是一个数,比表示两个数的关系。
6、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:
0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:
被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:
分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:
比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
①用比的前项和后项同时除以它们的最大公因数。
(1)②两个分数的比:
用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③两个小数的比:
向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。
注意:
最后结果要写成比的形式。
如:
15∶10=15÷10=
=3∶2
5.按比例分配:
把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
如:
已知两个量之比为
,则设这两个量分别为
。
6、路程一定,速度比和时间比成反比。
(如:
路程相同,速度比是4:
5,时间比则为5:
4)
工作总量一定,工作效率和工作时间成反比。
(如:
工作总量相同,工作时间比是3:
2,工作效率比则是2:
3)
第五章、圆的认识
一、认识圆
1、圆的定义:
圆是由曲线围成的一种平面图形。
2、圆心:
将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.
3、半径:
连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:
通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的
。
用字母表示为:
d=2r或r=
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:
角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:
长方形
只有3条对称轴的图形是:
等边三角形
只有4条对称轴的图形是:
正方形;
有无数条对称轴的图形是:
圆、圆环。
第六章、百分数
一、百分数的意义和写法
1、百分数的意义:
表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
2、千分数:
表示一个数是另一个数的千分之几。
3、百分数和分数的主要联系与区别:
(1)联系:
都可以表示两个量的倍比关系。
(2)区别:
①、意义不同:
百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;
分数的分子不能是小数,只能是除0以外的自然数。
4、百分数的写法:
通常不写成分数形式,而在原来分子后面加上“%”来表示。
二、百分数和分数、小数的互化
(一)百分数与小数的互化:
1、小数化成百分数:
把小数点向右移动两位,同时在后面添上百分号。
2.百分数化成小数:
把小数点向左移动两位,同时去掉百分号。
(二)百分数的和分数的互化
1、百分数化成分数:
先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。
2、分数化成百分数:
①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
二、百分数解决问题
(一)一般应用题
1、常见的百分率的计算方法:
①合格率=
②发芽率=
③出勤率=
④达标率=
⑤成活率=
⑥出粉率=
⑦烘干率=
⑧含水率=
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
(一般出粉率在70、80%,出油率在30、40%。
)
2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:
数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是“的”:
单位“1”的量×分率=分率对应量
(2)分率前是“多或少”的意思:
单位“1”的量×(1
分率)=分率对应量
3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
解法:
(建议:
最好用方程解答)
(1)方程:
根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):
分率对应量÷对应分率=单位“1”的量
4、求一个数比另一个数多(少)百分之几的问题:
两个数的相差量÷单位“1”的量×100%或:
1求多百分之几:
(大数÷小数–1)×100%
②求少百分之几:
(1-小数÷大数)×100%
第七章、形统计图
一、扇形统计图的意义:
用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:
1、条形统计图:
可以清楚的看出各种数量的多少。
2、折线统计图:
不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:
能够清楚的反映出各部分数量同总数之间的关系。
三、扇形的面积大小:
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级 数学 总结 OK