基于单片机的步进电机控制器的设计.docx
- 文档编号:29111462
- 上传时间:2023-07-20
- 格式:DOCX
- 页数:55
- 大小:637.20KB
基于单片机的步进电机控制器的设计.docx
《基于单片机的步进电机控制器的设计.docx》由会员分享,可在线阅读,更多相关《基于单片机的步进电机控制器的设计.docx(55页珍藏版)》请在冰豆网上搜索。
基于单片机的步进电机控制器的设计
第1章
1.1引言
动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、
Pulsemotor或Stepperservo,其应用发展已有约80年的历史。
步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。
步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。
当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。
在有些应用场合,并不需要高精度的控制,而是需要在满足一般工作要求的情况下,尽量使控制系统做到:
系统硬件结构简单,成本低;功能较为齐全;适应性强;电机各种运行状态指示一目了然,操作方便;系统抗干扰能力强,可靠性高等要求。
本论文就是采用这个思路进行设计。
一般步进电机控制器都用硬件实现,虽然电路可以做到了高集成度,可价格较贵,功能相对较单一,并且设计要求有所改变,就得改变整个硬件电路,比较麻烦。
而采用单片机的软件和硬件结合进行控制,运用其强大的可编程和运算功能,充分利用单片机的各种资源,能灵活的对步进电机进行控制,实现其不同模式、步数、正反转、转速等控制,如果需改变控制要求,一般只需改变软件就能适应新的环境,并且在本设计中利用动态扫描技术,把显示电路和键盘电路有机的结合起来,能做到一定的人机交换,而且为了抗干扰,提高可靠性,具有一定的应用价值。
1.2 步进电机常见的控制方案与驱动技术简介
1.2.1 常见的步进电机控制方案
1、基于电子电路的控制
步进电机受电脉冲信号控制,电脉冲信号的产生、分配、放大全靠电子元器件的动作来实现。
由于脉冲控制信号的驱动能力一般都很弱,因此必须有功率放大驱动电路。
步进电机与控制电路、功率放大驱动电路组成一体,构成步进电机驱动系统。
此种控制电路设计简单,功能强大,可实现一般步进电机的细分任务。
这个系统由三部分组成:
脉冲信号产生电路、脉冲信号分配电路、功率放大驱动电路。
系统组成如图1.1所示。
图1.1 基于电子电路控制系统
此种方案即可为开环控制,也可闭环控制。
开环时,其平稳性好,成本低,设计简单,但未能实现高精度细分。
采用闭环控制,即能实现高精度细分,实现无级调速。
闭环控制是不断直接或间接地检测转子的位置和速度,然后通过反馈和适当的处理,自动给出脉冲链,使步进电机每一步响应控制信号的命令,从而只要控制策略正确电机不可能轻易失步[4]。
该方案多通过一些大规模集成电路来控制其脉冲输出频率和脉冲输出数,功能相对较单一,如需改变控制方案,必须需重新设计,因此灵活性不高。
2、基于PLC的控制
PLC也叫可编程控制器,是一种工业上用的计算机。
PLC作为新一代的工业控制器,由于具有通用性好、实用性强、硬件配套齐全、编程简单易学和可靠性高等优点而广泛应用于各行业的自动控制系统中。
步进电机控制系统有PLC、环形分配器和功率驱动电路组成。
控制系统采用PLC来产生控制脉冲。
通过PLC编程输出一定数量的方波脉冲,控制步进电机的转角进而控制伺服机构的进给量,同时通过编程控制脉冲频率来控制步进电机的转动速度,进而控制伺服机构的进给速度。
环形脉冲分配器将PLC输出的控制脉冲按步进电机的通电顺序分配到相应的绕组。
PLC控制的步进电机可以采用软件环形分配器,也可采用硬件环形分配器。
采用软件环形分配器占用PLC资源较多,特别是步进电机绕组相数大于4时,对于大型生产线应该予以考虑。
采用硬件环形分配器,虽然硬件结构稍微复杂些,但可以节省PLC资源,目前市场有多种专用芯片可以选用。
步进电机功率驱动电路将PLC输出的控制脉冲放大,达到比较大的驱动能力,来驱动步进电机。
采用软件来产生控制步进电机的环型脉冲信号,并用PLC中的定时器来产生速度脉冲信号,这样就可以省掉专用的步进电机驱动器,降低硬件成本。
但由于PLC的扫描周期一般为但由于PLC的扫描周期一般为几毫秒到几十毫秒,相应的频率只能达到几百赫兹,因此,受到PLC工作方式的限制及其扫描周期的影响,步进电机不能在高频下工作,无法实现高速控制。
并且在速度较高时,由于受到扫描周期的影响,相应的控制精度就降低了。
3、基于单片机的控制
采用单片机来控制步进电机,实现了软件与硬件相结合的控制方法。
用软件代替环形分配器,达到了对步进电机的最佳控制。
系统中采用单片机接口线直接去控制步进电机各相驱动线路。
由于单片机的强大功能,还可设计大量的外围电路,键盘作为一个外部中断源,设置了步进电机正转、反转、档次、停止等功能,采用中断和查询相结合的方法来调用中断服务程序,完成对步进电机的最佳控制,显示器及时显示正转、反转速度等状态。
环形分配器其功能由单片机系统实现,采用软件编程的办法实现脉冲的分配。
本方案有以下优点:
(1)单片机软件编程可以使复杂的控制过程实现自动控制和精确控制,避免了失步、振荡等对控制精度的影响;
(2)用软件代替环形分配器,通过对单片机的设定,用同一种电路实现了多相步进电机的控制和驱动,大大提高了接口电路的灵活性和通用性;(3)单片机的强大功能使显示电路、键盘电路、复位电路等外围电路有机的组合,大大提高系统的交互性[5]。
基于以上优点,本次设计采用基于单片机的控制方案。
1.2.2 步进电机驱动技术
步进电动机上个世纪就出现了,它的组成、工作原理和今天的反应式步进电动机没有什么本质区别,也是依靠气隙间的磁导变化来产生电磁转矩。
上世纪80年代以后,由于廉价的微型计算机以多功能的姿态出现,步进电动机的控制方式变得更加灵活多样。
步进电机驱动技术指的是用步进电机驱动器的驱动级来实现对步进电机各相绕组的通电和断电,同时也是对绕组承受的电压和电流进行控制的技术。
到目前为止,步进电机驱动技术通常分为单电压驱动、单电压串电阻驱动、高低压驱动、斩波恒流驱动、升频升压驱动和细分驱动等。
单电压驱动是通过改变电路的时间常数以提高电机的高频特性。
该驱动方式早在六十年代初期国外就已大量使用,它的优点是结构简单、成本低;缺点是串接电阻器的做法将产生大量的能量损耗,尤其是在高频工作时更加严重,因而它只适用于小功率或对性能指标要求不高的步进电机驱动。
单电压串电阻驱动是在单电压驱动技术的基础上为电枢绕组回路串入电阻,用以改善电路的时间常数以提高电机的高频特性。
它提高了步进电机的高频响应、减少了电动机的共振,也带来了损耗大、效率低的缺点。
这种驱动方式目前主要用于小功率或启动、运行频率要求不高的场合。
高低压驱动是指不论电动机的工作频率是多少,在导通相的前沿用高电压供电来提高电流的上升沿斜率,而在前沿过后采用低电压来维持绕组的电流,即采用加大绕组电流的注入量以提高出力,而不是通过改善电路的时间常数来使矩频性能得以提高。
但是使用这种驱动方式的电机,其绕组的电流波形在高压工作结束和低压工作开始的衔接处呈凹形,致使电机的输出力矩有所下降。
这种驱动方式目前在实际应用中还比较常见。
为了弥补高低压电路中电流波形的下凹,提高输出转矩,七十年代中期研制出斩波电路,该电路由于采用斩波技术,使绕组电流在额定值上下成锯齿形波动,流过绕组的有效电流相应增加,故电机的输出转矩增大,而且不需外接电阻,整个系统的功耗下降,效率较高,因而恒流斩波电路得到了广泛应用,本文正是应用恒流斩波技术实现了驱动控制。
为改善恒流驱动方式的低频特性,设计一个低速时低电压驱动,高速时高电压驱动的电路,使其成为一个由脉冲频率控制的可变输出电压的开关稳压驱动电源。
在低速运行时,电子控制器调节功率开关管的导通角,使线路输出的平均电压较低,电动机不会像在恒流斩波驱动下那样在低速容易出现过冲或共振现象,从而避免产生明显的振荡。
当运行速度逐渐变快时,平均电压渐渐提高以提供给绕组足够的电流。
调频调压线路性能优于恒电压和恒电流线路,但实际运行中需要针对不同参数的电机,相应调整其输出电压与输入频率的特性。
细分驱动是指在每次脉冲切换时,不是将绕组的全部电流通入或切除,而是只改变相应绕组中电流的一部分,电动机的合成磁势也只旋转步距角的一部分。
细分驱动时,绕组电流不是一个方波而是阶梯波,额定电流是台阶式的投入或切除。
比如:
电流分成n个台阶,转子则需要n次才转过一个步距角,即n细分细分驱动最主要的优点是步距角变小,分辨率提高,且提高了电机的定位精度、启动性能和高频输出转矩:
其次,减弱或消除了步进电机的低频振动,降低了步迸电机在共振区工作的几率。
可以说细分驱动技术是步进电动机驱动与控制技术的一个飞跃[6]。
1.3 本文研究的内容
在一般的步进电机工作中,其电源均采用单极性直流电,通过对步进电机的各相绕组按恰当的时序方式通电,就可使其执行步进转动。
当某一相绕组通电时相应的两个磁极就分别形成N-S极产生磁场,并与转子形成磁路。
在磁场的作用下,转子将转动一定的角度,使转子齿与定子齿对其,从而使步进电机向前“走”一步。
转子的角位移大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入的脉冲同步。
只要能正确控制输入的电脉冲数、频率以及电机各相绕组通电的相序,即可得到所需要的转角、转速及转向,通过单片机很容易实现对步进电机的数字控制。
本设计采用
单片机实现对两相步进电机的转速控制。
由单片机产生的脉冲信号经过脉冲分配器后分解出对应的四相脉冲,分解出的四相脉冲经驱动电路功率放大后驱动步进电机的转动。
本课题的研究目的之一就是设计一套硬件系统较简单、经济,但功能较为齐全,适应性强,操作方便,交互性强,可靠性高的步进电机控制系统。
第2章 步进电机概述
2.1 步进电机的分类
步进电动机的种类很多,从广义上讲,步进电机的类型分为机械式、电磁式和组合式三大类型。
按结构特点电磁式步进电机可分为反应式(VR)、永磁式(PM)和混合式(HB)三大类;按相数分则可分为单相、两相和多相三种。
目前使用最为广泛的为反应式和混合式步进电机[7]。
(1)反应式步进电机(VariableReluctance,简称VR)反应式步进电机的转子是由软磁材料制成的,转子中没有绕组。
它的结构简单,成本低,步距角可以做得很小,但动态性能较差。
反应式步进电机有单段式和多段式两种类型;
(2)永磁式步进电机(PermanentMagnet,简称PM)永磁式步进电机的转子是用永磁材料制成的,转子本身就是一个磁源。
转子的极数和定子的极数相同,所以一般步距角比较大。
它输出转矩大,动态性能好,消耗功率小(相比反应式),但启动运行频率较低,还需要正负脉冲供电;
(3)混合式步进电机(Hybrid,简称HB)混合式步进电机综合了反应式和永磁式两者的优点。
混合式与传统的反应式相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。
因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪声低、低频振动小。
这种电动机最初是作为一种低速驱动用的交流同步机设计的,后来发现如果各相绕组通以脉冲电流,这种电动机也能做步进增量运动。
由于能够开环运行以及控制系统比较简单,因此这种电机在工业领域中得到广泛应用。
由于本设计的设计目的更注重整个系统的有机结合,所以只采用反应式步进电机[7]。
2.2 步进电机的工作原理
2.2.1 结构及基本原理
步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。
当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。
因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。
每来一个脉冲电压,转子就旋转一个步距角,称为一步。
根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。
电机将电能转换成机械能,步进电机将电脉冲转换成特定的旋转运动。
每个脉冲所产生的运动是精确的,并可重复,这就是步进电机为什么在定位应用中如此有效的原因。
通过电磁感应定律我们很容易知道激励一个线圈绕组将产生一个电磁场,分为北极和南极,见图2.1所示。
定子产生的磁场使转子转动到与定子磁场对直。
通过改变定子线圈的通电顺序可使电机转子产生连续的旋转运动。
图2.1 激励线圈产生电磁场
2.2.2 两相电机的步进顺序
1、两相电机的单相通电步进顺序
在图2.2中我们很清晰的展示了在单相通电时一个两相步进电机的典型的步进顺序。
在第1步中,两相定子的A相通电,因异性相吸,其磁场将转子固定在图示位置。
当A相关闭、B相通电时,转子顺时针旋转90°。
在第3步中,B相关闭、A相通电,但极性与第1步相反,这促使转子再次旋转90°。
在第4步中,A相关闭、B相通电,极性与第2步相反。
重复该顺序促使转子按90°的步距角顺时针旋转[8][9]。
图2.2 两相电机的单相通电步进顺序
2、两相电机的双相通电步进顺序
图2.2中显示的步进顺序称为“单相激励”步进。
更常用的步进方法是“双相激励”,其中电机的两相一直通电。
但是,一次只能转换一相的极性,见图2.3所示。
在第1步中,两相定子的A相和B相同时通电,因异性相吸,再加上力的相互作用关系,其磁场将转子固定在图示step1位置。
在第2步中,两相定子的A相关闭,而B和a相(此时的a相通电极性与第1步A相反)同时通电,因异性相吸,再加上力的相互作用关系,其磁场将转子固定在图示step2位置。
在第3步中,两相定子的a相和b相同时通电,因异性相吸,再加上力的相互作用关系,其磁场将转子固定在图示step3位置。
在第4步中,两相定子的b相和A相同时通电,因异性相吸,再加上力的相互作用关系,其磁场将转子固定在图示step4位置。
按照这样的通电方式电机就转过了一周[8][9]。
两相步进时,转子与定子两相之间的轴线处对直。
由于两相一直通电,本方法比“单相通电”步进多提供了41.1%的力矩,但输入功率却为2倍。
图2.3 两相电机的双相通电步进顺序
3、步进电机的半步工作方式
电机也可在转换相位之间插入一个关闭状态而走“半步”。
这将步进电机的整个步距角一分为二。
例如,一个90°的步进电机将每半步移动45°,见图2.4。
但是,与“两相通电”相比,半步进通常导致15%~30%的力矩损失(取决于步进速率)。
在每交换半步的过程中,由于其中一个绕组没有通电,所以作用在转子上的电磁力要小,造成了力矩的净损失。
从原理图我们很容易看到半步工作方式其实就是将两相电机的单相通电工作方式和两相电机的双相通电工作方式相互结合起来。
两相步进电机的工作模式有两相四拍和两相八拍等两种,其中我们在图2.2和图2.3中展示的都叫做两相四拍工作模式,而下面的2.4图展示的就是两相八拍工作模式[8][9]。
图2.4 两相电机的半步步进顺序
2.3步进电机的工作特点
本设计选用了型号为42BYG型的感应子式步进电机,它与传统的反应式步进电机相比结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。
因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。
就目前步进电机的应用情况来说,步进电机的自身特点具体归纳起来有[10]:
(1)电机必须加驱动才可以运转,驱动信号必须为脉冲信号,没有脉冲的时候步进电机静止,如果加入适当的脉冲信号,步进电机就会以一定的角度(称为步角)转动。
转动的速度和脉冲的频率成正比。
(2)步进电机具有瞬间启动和急速停止的优越特性。
(3)改变驱动器输入脉冲的顺序,可以方便的改变电机的转动方向。
(4)位移与输入脉冲信号数相对应,步距误差不长期积累,可以组成结构较为简单而又具有一定精度的开环控制系统,也可以要求更高精度时组成闭环控制系。
(5)电机停止转动的时候具有自锁功能。
(6)步距角选择范围大,可在几十角分至180度大范围内选择。
在小步距情况下,通常可以在越低速下以高转矩运行,因而可以不经减速器直接驱动负载工作。
(7)步进电机不能使用普通的交流电源驱动。
(8)一般步进电机的精度是步进角的3%~5%,且步距误差不会长期积累。
(9)步进电机的力矩会随转速的升高而下降:
当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。
在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。
(10)步进电机低速时可以正常运转,但若高于一定频率就无法启动,并伴有啸叫声.步进电机有一个技术参数:
空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。
在有负载的情况下,启动频率应更低。
如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)
第3章 系统的硬件设计
3.1 系统设计方案
3.1.1 系统的方案简述与设计要求
本设计采用单片机AT89S51来作为整个步进电机控制系统的运动控制核心部件,采用了电机驱动芯片L298及其外围电路构成了整个系统的驱动部分,再加上作为执行部件的步进电机来构成了一个基本的步进电机控制系统。
系统的具体功能和要求如下:
1.单片机最小系统板的设计;
2.设计兼有两相两拍和两相四拍的脉冲分配器;
3.实现步进电机的启停、正转、反转控制;
4.驱动电路可提供电压为12V,电流为0.3A的驱动信号;
5.能实现步进电机的转速调节,最低转速为25转/分,最高转速为100转/分;
6.步进电机的转速由数码管显示;
7.键盘扫描电路的设计
3.1.2 系统的组成及其对应功能简述
整个系统的组成包括单片机最小系统,电机驱动模块,串口下载模块,数码管显示模块,电机驱动电流检测模块,独立按键等模块组成。
具体框图如图3.1所示:
图3.1 系统总体框图
单片机最小系统作为整个系统的控制核心,它主要负责产生控制步进电机转动的脉冲,通过单片机的软件编程代替环形脉冲分配器输出控制步进电机的脉冲信号,步进电机转动的角度大小与单片机输出的脉冲数成正比步进电机转动的速度与输出的脉冲频率成正比,而步进电机转动的的方向与输出的脉冲顺序有关。
同时单片机系统还负责处理来自电机驱动电流检测模块检测到的电流值。
与此同时,单片机将会把电机转速,电机的转动方向,以及电流检测模块检测到的电机驱动的电流通过数码管显示出来。
电机驱动模块负责将单片机发给步进电机的信号功率放大,从而驱动电机工作。
串口下载模块主要是负责实行计算机和单片机之间的通信,将在计算机里面编写好的程序下载到单片机芯片当中。
数码管显示模块就主要是显示电机转速,电机转向,和通过电机的电流等系统的实时信息。
电机驱动电流检测模块主要是检测通过电机驱动芯片的电流,然后通过运放将检测到的信号放大,最后将放大后的信号通过模数转换芯片ADC0804处理后送给单片机。
独立按键作为一个外部中断源,和单片机端口连接,通过它设置了电机的正转,反转,加速,减速,显示电机电流等功能。
采用了中断和查询相结合的方法来调用中断服务程序,完成了对步进电机的最佳的及时的控制。
本节主要是在第一章和第二章的基础上引出了本论文将要采用的设计方案,并详细的清楚的一条条列出了设计要实现的基本设计要求。
然后是基于我的设计方案,比较简单的但有条理的描述了系统的各个部分的组成以及其对应的基本功能。
通过这一章的内容,我们能对本设计有一个简单的总体的把握,既是能清楚的知道本题目的设计内容,设计方法,以及最终的预期目标。
3.2 单片机最小系统
3.2.1 AT89C51简介
AT89C51是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4kbytes的可系统编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。
它集Flash程序存储器既可在线编程(ISP)也可用传统方法进行编程及通用8位微处理器于单片芯片中,功能强大。
1、主要性能参数
·与MCS-51产品指令系统完全兼容
·4k字节在系统编程(ISP)Flash闪速存储器
·1000次擦写周期
·4.0-5.5V的工作电压范围
·全静态工作模式:
0Hz-33MHz
·三级程序加密锁
·128×8字节内部RAM
·32个可编程I/O口线
·2个16位定时/计数器
·6个中断源
·全双工串行UART通道
·低功耗空闲和掉电模式
·中断可从空闲模唤醒系统
·看门狗(WDT)及双数据指针
·掉电标识和快速编程特性
·灵活的在系统编程(ISP字节或页写模式)
2、功能特性概述
AT89C51提供以下标准功能:
4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,看门狗(WDT),两个数据指针,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。
同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。
空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。
掉电方式保存RAM的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。
3、引脚功能说明
图3.2 AT89S51
该设计使用到的单片机芯片对应管脚名称位置等如图3.2的引脚功能图详细说明。
·VCC:
电源电压
·GND:
地
·P0口:
P0口是一组8位漏极开路型双向I/0口,也即地址/数据总线复用口。
作为输出口用时,每位能驱动8个TTL逻辑门电路,对端口写“l”可作为高阻抗输入端用。
在和数据总线复用,在访问期间激活内部上拉电阻。
在F1ash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。
访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)。
·P1口:
Pl是一个带内部上拉电阻的8位双向I/O口,Pl的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。
对端口写“l”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。
作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。
·P2口:
P2是一个带内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。
对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。
在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。
在访问8位地址的外部数据存储器(如执行MOVX@Ri指令)时,P2口线上的内容(也即特殊功能寄存器(SFR)区P2寄存器的内容),在整个访问期间不改变。
Flash编程或校验时,P2亦接收高位地址和其它控制信号。
·P3口:
P3口是一组带有内部上拉电阻的8位双向I/O口。
P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。
对P3口写入“l”时,它们被内部上拉电阻拉高并可作为输入端口。
作输入端时,被外部拉低的P3口将用上拉电阻输出电流(IIL)。
P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如下表所示:
P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。
具体功能如表3.1所示
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 单片机 步进 电机 控制器 设计