初二数学期中练习题.docx
- 文档编号:28934776
- 上传时间:2023-07-20
- 格式:DOCX
- 页数:27
- 大小:186.77KB
初二数学期中练习题.docx
《初二数学期中练习题.docx》由会员分享,可在线阅读,更多相关《初二数学期中练习题.docx(27页珍藏版)》请在冰豆网上搜索。
初二数学期中练习题
初二数学期中练习题
A类要求:
一、选择题:
1.如图,E为平行四边形ABCD内一点,若S□ABCD=6,
则图中阴影部分的面积为().
A.2B.3C.4D.5
2.如图,在方格纸中有四个图形①、②、③、④,其中面积相等的图形是()
A.①和②B.②和③C.②和④D.①和④
3.在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()
①②③④
4.已知菱形的边长为6cm,一个内角为60度,则菱形较短的对角线长是()
A.6cmB.3cmC.12cmD.9cm
5.已知:
如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA
的中点.若AB=2,AD=4,则图中阴影部分的面积为()
A.3B.4C.6D.8
6.矩形具有而一般平行四边形不具有的性质是()
A.对角线互相平分B.邻角互补C.对角相等D.对角线相等
7.如图,四边形ABCD中,P为AC对角线上一点,PE∥BC交
AB于点E,PF∥AB交AD于点F.若S=20(cm2),则图中阴影部分
的面积=(cm2).
8.如图,已知直线m∥n,A、B为直线n上的两点,C、P为直线上m的两点,
(1)请写出图中面积相等的各对三角形:
(2)若A、B、C为三个定点,点P在直线m上移动,
无论P点移动到任何位置,总有与ΔABC的面积相等,
理由是.
9.若平行四边形的两邻边长分别为16和20,两长边距离为8,则两短边距离为.
10.矩形ABCD中,对角线AC,BD相交于点O,∠BOC=2∠AOB.若AC=18cm,则
AB=cm.
11.已知,平行四边形ABCD的对角线AC和BD交于点O,若△AOB的面积是3,那么平行四边形ABCD的面积是.
12.如图,直线l是四边形ABCD的对称轴,若AB=CD,有下面的
结论①AB∥CD;②AC⊥BD;③OA=OC;④AB⊥BC.
其中正确的结论有:
.
13.如图,l是四边形ABCD的对称轴,如果AD∥BC,有下列结论:
①AB∥CD,②AB=BC,③AB⊥BC,④AO=OC.其中正确的
结论是.(把你认为正确的结论的序号都填上)
14.写出一条菱形特有而一般平行四边形没有的特性(性质):
.
24.菱形具有而矩形不一定具有的特性是.(写出一条就行)
15.已知:
如图,在矩形ABCD中,等腰直角△EFC内接于矩形.
若ED=2,矩形周长为16,则AE=____.
16.如图,在平行四边形ABCD中,AD=5,AB=8,AE平分∠BAD
交CD于E,求EC的长.
17.
(1)如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交
AC于F,试说明四边形AEDF是菱形.
18.如图,在平行四边形ABCD中,对角线AC与BD交于O点,已知点
E、F分别是AO、OC的中点,试说明四边形BFDE是平行四边形.
B类要求:
19.如图,面积为12(cm^2)的△ABC沿BC方向平移至△DEF的位置,平移的距离是BC长的两倍,则图中的四边形ABED的面积为()
A.24(cm2)B.36(cm2)C.48(cm2)D.无法确定
20.如图,把一个长方形纸片沿EF折叠后,点D、C分别
落在D'、C'的位置,若∠EFB=65度,∠AED'等于()。
A.50度B.55度C.60度D.65度
21.菱形的周长为a,高为h,一条对角线为m,则另一条对角线的长是()
(A)ah(B)hm(C)am(D)
22.如图,平行四边形ABCD中,过点A作直线交BC于点E,交DC的
延长线于点F,若△ABF的面积为5,则△ADE的面积为.
23.平行四边形ABCD的周长为28,它的对角线AC和BD交于点O,且△AOB的周长比△BOC的周长大2,那么AB的长是.
24.若一个平行四边形一个内角的平分线把一条边分成2和3两条线段,则该平行四边形的周长是或.
25.如图,将矩形ABCD的对角线BD对折,对折后BC、AD的交点为E,将重叠部分剪下并展开,则四边形BE'DE的形状是,理由是.
26.如图,点E、F是平行四边形ABCD对角线AC上两点,请你添加
一个适当的条件:
四边形DEBF是平行四边形.
27.已知平行四边形ABCD,试用两种方法将平行四边形ABCD分成面积相等的四个部分.
0.
28.如图,矩形ABCD中,对角线AC、BD交于点O,DE平分
∠ADC交BC于点E,∠BDE=15°,
求
(1)∠COD的度数;
(2)∠COE的度数.
29.如图,平行四边形ABCD,∠BCD的平分线CF交边AB于F,
∠ADC的平分线DG交边AB于G.
(1)求证:
AF=GB
(2)请你在已知条件的基础上再添加一个条件,使得△EF为等腰直角三角形,并说明理由.
30.如图,在平行四边形ABCD中,AB=2BC,M为AB的中点,
试说明CM⊥DM.
31.如图,△ABC中,∠C=90度,CD平分∠ACB,过点D
分别作DE⊥BC,DF⊥AC,垂足分别为E,F,试说明:
四边形
DECF是正方形.
32.如图,在△ABC中,D为BC边上的一动点?
(点D不与B、
C两点重合).DE∥AC交AB于E点,DF∥AB交AC于F点.?
⑴试探索AD满足什么条件时,四边形AEDF为菱形,并加以说明;
⑵在⑴条件下,△ABC满足什么条件时,四边形AEDF为正方形.
33.如图,在△ABC中,O为BC上一点,过O作直线OE∥AB交∠ABC,
∠CBF的平分线于点D,E,连结CD,CE,
(1)说明DO=OE;
(2)当点O在BC的什么位置时,四边形为矩形?
(3)在
(2)的条件下,△ABC又满足什么条件时,四边形BDCE为正方形?
34.如图,M、N分别是平行四边形ABCD的对边AD、
BC的中点,且AD=2AB,说明:
四边形PMQN为矩形.
35.如图,ABCD中AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、
∠CDA的平分线,AQ、BN交于点P,CN、DQ交于点M,求证:
MP=NQ.
36.如图,在平行四边形ABCD中,E、F是直线BD上两点,
且DE=BF,试说明AE=CF.
37.如图,已知△ABC中,AB=AC,E是AB的中点,D在BC上.延长
ED到F,使ED=DF=EB.连结FC.说明四边形AEFC是平行四边形.
38.如图,在平行四边形ABCD中,点E、F在对角线AC上,
且AE=CF,观察图形,以图中标明字母的点为端点添加线段,
请你猜想出一个与你添加的线段有关的正确结论.
39.如图,把边长为2的正方形剪成四个形状相同,大小相等的直角三角形。
请用这四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠且不留空隙),并把你的拼法仿照图中实际大小画在方格纸内.?
⑴不是正方形的菱形(一个)
⑵不是正方形的矩形(一个)
⑶梯形(一个)
⑷不是矩形和菱形的平行四边形(一个)
⑸不是梯形和平行四边形的凸四边形(一个)
40.已知:
平行四边形ABCD,在AD、BC所在直线上分别取点E,F,当满足下列条件时,怎样画线段EF?
⑴AC、EF互相平分
⑵AC、EF互相平分且AC=EF
⑶AC、EF互相平分且AC⊥EF
41.如图,点D是线段AB的中点,点C是线段AB的垂直
平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.
⑴求证:
CE=CF;
⑵点C运动到什么位置时,四边形CEDF成为正方形?
请说明理由.
C类要求:
42.点P是边长为1的菱形ABCD对角线AC上一个动点,
点M、N分别为AB,BC边上的中点,MP+NP的最小值是()
A.2B.1C.(3/2)D.(1/2)
43.如图,点E是平行四边形ABCD的一边延长线上一点,
DE交BC于F,求证:
S△ABF=S△EFC.
44.如图,平行四边形ABCD中,对角线AC=21cm,BE⊥AC,垂足为E,
且BE=5cm,AD=7cm,试求AD和BC之间的距离.
45.已知:
如图,平行四边形ABCD中,E、F分别为AD、BC中点,
BE、AF交于M,EC、DF交于N.?
⑴当ABCD的一组邻边满足什么条件时,四边形EMFN是矩形.?
⑵当ABCD的一个内角满足什么条件时,四边形EMFN是菱形.
46.已知如图,AB∥CD,AD∥CE,且∠ACB=90度,E是AB的中点.?
⑴试说明DE与AC相互垂直平分;
⑵探究:
当四边形AECD是正方形时,∠B的度数?
47.如图,已知△ABC中,AB=AC,M是BC的中点,MG⊥AB,
MD⊥AC,GF⊥AC,DE⊥AB,垂足分别为G、D、F、E,GF与
DE相交于H,请你判断四边形HGMD的形状,并说明理由.
48.如图,在矩形ABCD中,AB=3,AD=4,P是AD上的与A、D
不重合的一动点,PE⊥AC,PF⊥BD,E、F为垂足,求PE+PF的值.
49.已知:
如图,E是正方形ABCD中BC上任意一点,AF平分EAD交CD于F.求证:
BEDFAE.
50.如图,正方形ABCD中对角线AC、BD相交于O,E为AC上一点,AG⊥EB交EB于G,AG交BD于F。
(1)说明OE=OF的道理;
(2)若E为AC延长线上,AG⊥EB交EB的延长线于G,AG、BD的延长线交于F,其他条件不变,如图2,则结论:
“OE=OF”还成立吗?
请说明理由.
51.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC。
AM与BN相交于点P。
求证:
∠BPM=45°
52.如图,已知AC是□ABCD的对角线,△ACP和△ACQ都是等边三角形,求证:
四边形BPDQ是平行四边形.
53.如图,以△ABC的三条边为边向BC的同一侧作等边△ABP、等边△ACQ,等边△BCR,求证:
四边形PAQR为平行四边形.
54.如图,两条等宽的长纸条倾斜地重叠着,试证重叠部分ABCD为菱形.
55.如图,△ABC中,∠C=90°,AD平分∠BAC,ED⊥BC于D,DF//AB,求证:
AD与EF互相垂直平分。
56.四边形ABCD中,AB=BC=CD=DA,∠BAD=120°,M为BC上的点,若△AMN中有一角等于60°,求证:
△AMN为等边三角形.
57.如图,△ABC中,∠A=90°,∠B的平分线交AC于D,AH、DF都垂直BC,垂足为H、F,求证:
四边形AEFD为菱形.
58.△ABC的三条中线分别为AD、BE、CF,H为BC边外一点,且四边形BHCF为平行四边形,求证:
AD//EH.
59.如图,点P是等边△ABC内任意一点,过P点分别作各边的平行线,
E、F、M、N、G、H,请猜测线段EF、MN、GH的和是什么?
当点P
在等边△ABC内运动时,所猜测的结论有变化吗?
60.已知:
如图,△ABC是等边三角形,过AB边上的点D作
DG∥BC,交AC于点G,在DG的延长线上取点E,使DE=DB,
连结AE,CD.
⑴求证:
△AGE≌△DAC.
⑵过点E作EF∥DC,交BC于点F,请你连结AF,并判断△AEF是怎样的三角形,试证明你的结论.
61.以三角形ABC的三边为边,在直线BC的同侧向形外作等边三角形△ABD、△BCE、△ACF.四边形ADEF是平行四边形吗?
为什么?
62.如图,分别以AB、AC为边向△ABC形外作正方形ABDE、
正方形ACGF,M、N、P、Q分别是EF、BC、EB、FC的中点.
(1)猜想四边形MPNQ的形状:
试证明你猜想的结论:
(2)△ABC形状的改变是否对上述结论有影响,请简要说明.
63.如图,已知△ABC,分别以AB、AC为边向外作等边△ABF、△ACE,
再以AE、AF为边向外作平行四边形AEDF,试判断△BCD的形状,
并证明你的结论.
64.如图,E为□ABCD外一点,且AE⊥EC,BE⊥ED.
求证:
□ABCD是矩形.
65.如图,点M是矩形ABCD边AD的中点,点P是BC上一动点,
PE⊥MC,PF⊥MB,垂足为E、F.
(1)当矩形ABCD的长与宽满足什么条件时,四边形
PEMF为矩形?
(2)在
(1)中,当点P运动到什么位置时,矩形PEMF边
为正方形,为什么?
66.如图,把一个面积为1的正方形等分成两个面积为
的矩形,
接着把面积为
的矩形等分成两个面积为
的矩形,再把面
积为
的矩形等分成两个面积为
的矩形,如此进行下去,
试利用图形揭示的规律计算:
=.
67.如图,已知□ABCD中,AE⊥BD,CF⊥BD,垂足为E、F
G、H分别为AD、BC的中点,求证:
EF和GH互相平分.
68.如图,□ABCD中,AB>BC,∠A与∠D的平分线交于点E,
∠B与∠C的平分线交于点F.
(1)EF与AB之间有怎样的位置关系?
为什么?
(2)EF、BC与AB之间有怎样的数量关系?
为什么?
(3)如果将条件“AB>BC”改为“AB 试探索说明. 69.如图,E为矩形ABCD的边AD上一点,且BE=DE,P为对角线 BD上一点,PF⊥BE于F,PG⊥AD于G.,求证: PF+PG=AB 70.如图,梯形ABCD中,AB∥CD,对角线AC、BD垂直相交于H, M是AD上的点,MH所在的直线交BC于N,在以上的前提下, 试将下列设定中的两个作为题设,另一个作为结论组成一个正 确的命题,并探求这个命题 1AD=BC;②MN⊥BC;③AM=DM. (全等) 71.已知: 如图,平行四边形ABCD中,E是BC中点,AE=ED, 求证: 四边形ABCD是矩形. 72.已知: 如图,在矩形ABCD中,BE平分角ABC交DC 于E,EF⊥AE交BC于F,求证: AE=EF. 73.已知: 如图,在矩形ABCD中,点E为AD上一点,且 CE=BC,BF⊥EC,求证: AB=BF. 74.已知: 如图,平行四边形ABCD中,M、N分别是CD, AB上的点,E、F是AC上的点,若CM=AN,AE=CF, 求证: 四边形MENF是平行四边形. 75.已知: 如图,在矩形ABCD中,AC的中垂线交 AD于E,交BC于F,求证: 四边形AFCE是菱形. 76.如图,矩形ABCD中,AC与BD交于O点, BE⊥AC于E,CF⊥BD于F.求证: BE=CF. 77.如图,平行四边形ABCD中,AE⊥BD,CF⊥BD, 垂足分别为E、F,求证: ∠BAE=∠DCF. 平移 1.下列现象中,属于平移的是: 【 】 ⑴温度计中,液柱的上升或下降;⑵打气筒打气时,活塞的运动; ⑶钟摆的摆动;⑷传送带上,瓶装饮料的移动 A.⑴,⑵B.⑴,⑶C.⑵,⑶D.⑵,⑷ 2.下列现象中,属于平移的是: 【 】 A.空中放飞的风筝B.飞机在直线跑道上滑行到停止的运动 C.篮球运动员投球进入篮筐的过程D.乒乓球比赛中的高抛发球后,乒乓球的运动 3.观察图中的图形,请说出平移的方向和距离. 4.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是(). A.△OCDB.△OABC.△OAFD.△OEF 5.判断: ⑴线段a∥b,则线段b可以看做是线段a平移得到的.() ⑵线段a=b,则线段b可以看做是线段a平移得到的.? () ⑶线段b是由线段a平移得到的,则一定有a∥b.? () ⑷图形在平移的过程中对应点所连的线段一定平行.() 6.如图,△ABE沿射线所示方向平移一定距离后成△CDF. ⑴图中平行且相等的三条线段是; ⑵若AB=2cm,则CD=, 若∠AEB=45O,则∠CFD=. 7.小明把自己的左手和右手手印按在同一张纸上,左手手印(填“能”或“不能”)通过平移与右手手印完全重合.() 8.如果同一平面的两个图形通过平移,不论其起始位置如何,总能完全重合,则这两个图形是() A.两个点B.两个半径相等的半圆 C.两个点或两个半径相等的半圆D.两个完全相等的多边形 9.将字母E向上平移4cm的作图中,第一步是在字母“E”上至少需找出关键的个点. 10.将△ABC沿BC方向平移2厘米,画出平移后的图形. 11.如图,经过平移,△ABC的边AB移到了EF,作出平移后的三角形. 12.以线段a=16,b=13,c=10,d=6为边,且使a∥c作四边形,这样的四边形() A.能作一个B.能作两个C.能作无数个D.不能作 13.图形的操作过程(本题中四个矩形的水平方向的边长均为a,竖直方向的边长均为b): 在途中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分); 在图中,将折线A1A2A3向右平移1个单位到B1B2B3得到封闭图形A1A2A3B3B2B1(即 阴影部分). ⑴在图中,请你类似地画一条有两个折点 的线,同样向右平移1个单位,从而得到一 个封闭图形,并用斜线画出阴影; ⑵请你分别写出上述三个图形中除去阴影 部分后剩余部分的面积; S1=S2=S3=. 联想与探索: ⑶如图,在一块矩形草地上,有 一条弯曲的柏油小路(小路任何地方水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少? 并说明你的猜想是正确的. 小明家进行装修的时候,需要一块菱形的木板,但现在手头上只有一块矩形木板,小明想把矩形木板变成菱形木板,又不浪费一点材料,请你想办法通过切割和平移矩形木板,将其变成菱形木板,解决这个难题(画出示意图). 旋转 1. 如图,△ABC经过旋转后达到△ADE的位置,∠BAD=55度,在这个旋转过程中: ⑴旋转的中心是点;⑵旋转的角度是; ⑶点B的对应点是点;⑷∠C的对应角是; ⑸线段BC的对应线段是. 2.如图,三角形ADE是由三角形ABC旋转得到的,通过观察, 旋转中心是点,在△ADE中,与∠ACB对应的是, 与线段AB对应相等的是线段. 3.如图,如果把钟表的指针看作四边形AOBC,它绕O点旋转 得到四边形DOEF,则旋转角的度数与()的度数相等.? A.∠AOBB.∠BODC.∠DOED.∠AOD 4. 如图,等边△BDE是由等边△BAC经过旋转得到的,试判断旋转 中心和旋转角度以及旋转的方向. 5. 如图,△ABC是等腰直角三角形,点D是斜边BC中点,△ABD 绕点A旋转到△ACE的位置,恰与△ACD组成正方形ADCE,则 △ABD绕点A所作的旋转是(). A.顺时针旋转225度B.逆时针旋转45度 C.顺时针旋转315度D.逆时针旋转90度 6.如图,∠BCD=120度,把△BCD绕C点按顺时针方向旋转60度 到△ACE的位置,则BC旋转到了,∠ACD= 7.如图所示是游乐园中的大型旋转车的简图,游人坐在旋转车的车斗中, 任旋转车不停地旋转,但总是头朝上,绝不会掉下来,试问车斗所作的 移动式什么移动? 请在下面答案中选一个正确的确答案() A.旋转B.对称C.平移D.以上答案都不对 8.在旋转过程中,下列命题中正确的是: () ⑴图形上每一点都移动了相同的距离;⑵图形上每一点都绕旋转中心转过了相同的角度; ⑶对应点到旋转中心的距离相等;⑷所有的对应点到旋转中心的距离都相等. A. (1), (2)B. (2),(3)C.(3),(4)D. (2),(4). 9.经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同角度. A.任意一对对应点与旋转中心的连线所成的角都是旋转角 B.对应点到旋转中心的距离相等 C.旋转中心也转动了相同的角度 D.经过旋转的图形,有且只有一个与已知点对应 以上错误的选项是() 10.如图所示,画出△AOB绕O点顺时针旋转90度后的图形, 并指出图中相等的线段和角. 11.小华同学正在黑板上画△ABC绕△ABC外一点P旋转60度角的旋转图,当他完成A、B两点旋转后的对应点A'、B'时,不小心将旋转中心P擦掉了,没有旋转中心P,小华不知道如何继续画下去,请同学们帮助小华找到旋转中心P,使他继续完成剩下的图形. 12.图中△ABC与△A'B'C'是形状、大小完全一样的两个三角形,同过平移、旋转使得△ABC运动到△A'B'C'的位置,请同学们动手试一试,看谁的方法多. 13.小亮在镜中看到身后墙上的时钟如图,你认为实际时间最接近8点的是(). 14.观察图中所列“风车”的平面图案,其中既是轴对称图形,又可以通过旋转得到的图形有() A.1个B.2个C.3个D.4个 15.可由旋转得到的有() A.1个B.2个C.3个D.4个 16.如图所示,把一个直角三角尺ACB绕着30度角的顶 点B顺时针旋转,使得点A与CB的延长线上的点E重合.? ⑴三角尺旋转了多少度? ⑵连结CD,试判断△CBD的形状.? ⑶求∠BDC的度数.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 期中 练习题