车牌识别的matlab程序详细注释并有使用注意点.docx
- 文档编号:2871302
- 上传时间:2022-11-16
- 格式:DOCX
- 页数:11
- 大小:19.29KB
车牌识别的matlab程序详细注释并有使用注意点.docx
《车牌识别的matlab程序详细注释并有使用注意点.docx》由会员分享,可在线阅读,更多相关《车牌识别的matlab程序详细注释并有使用注意点.docx(11页珍藏版)》请在冰豆网上搜索。
车牌识别的matlab程序详细注释并有使用注意点
附录
车牌识别程序
clear;
closeall;
%Step1获取图像装入待处理彩色图像并显示原始图像
Scolor=imread('3.jpg');%imread函数读取图像文件
%将彩色图像转换为黑白并显示
Sgray=rgb2gray(Scolor);%rgb2gray转换成灰度图
figure,imshow(Scolor),title('原始彩色图像');%figure命令同时显示两幅图
figure,imshow(Sgray),title('原始黑白图像');
%Step2图像预处理对Sgray原始黑白图像进行开操作得到图像背景
s=strel('disk',13);%strel函数
Bgray=imopen(Sgray,s);%打开sgrays图像
figure,imshow(Bgray);title('背景图像');%输出背景图像
%用原始图像与背景图像作减法,增强图像
Egray=imsubtract(Sgray,Bgray);%两幅图相减
figure,imshow(Egray);title('增强黑白图像');%输出黑白图像
%Step3取得最佳阈值,将图像二值化
fmax1=double(max(max(Egray)));%egray的最大值并输出双精度型
fmin1=double(min(min(Egray)));%egray的最小值并输出双精度型
level=(fmax1-(fmax1-fmin1)/3)/255;%获得最佳阈值
bw22=im2bw(Egray,level);%转换图像为二进制图像
bw2=double(bw22);
%Step4对得到二值图像作开闭操作进行滤波
figure,imshow(bw2);title('图像二值化');%得到二值图像
grd=edge(bw2,'canny')%用canny算子识别强度图像中的边界
figure,imshow(grd);title('图像边缘提取');%输出图像边缘
bg1=imclose(grd,strel('rectangle',[5,19]));%取矩形框的闭运算
figure,imshow(bg1);title('图像闭运算[5,19]');%输出闭运算的图像
bg3=imopen(bg1,strel('rectangle',[5,19]));%取矩形框的开运算
figure,imshow(bg3);title('图像开运算[5,19]');%输出开运算的图像
bg2=imopen(bg3,strel('rectangle',[19,1]));%取矩形框的开运算
figure,imshow(bg2);title('图像开运算[19,1]');%输出开运算的图像
%Step5对二值图像进行区域提取,并计算区域特征参数。
进行区域特征参数比较,提取车牌区域
[L,num]=bwlabel(bg2,8);%标注二进制图像中已连接的部分
Feastats=imfeature(L,'basic');%计算图像区域的特征尺寸
Area=[Feastats.Area];%区域面积
BoundingBox=[Feastats.BoundingBox];%[xywidthheight]车牌框架大小
RGB=label2rgb(L,'spring','k','shuffle');%标志图像向RGB图像转换
figure,imshow(RGB);title('图像彩色标记');%输出框架的彩色图像
lx=0;
forl=1:
num
width=BoundingBox((l-1)*4+3);%框架宽度的计算
hight=BoundingBox((l-1)*4+4);%框架高度的计算
if(width>98&width<160&hight>25&hight<50)%框架的宽度和高度的范围,这块儿不同的图片对应不同,可以用终端操作查看后更改!
!
!
lx=lx+1;
Getok(lx)=l;
end
end
fork=1:
lx
l=Getok(k);
startcol=BoundingBox((l-1)*4+1)-2;%开始列
startrow=BoundingBox((l-1)*4+2)-2;%开始行
width=BoundingBox((l-1)*4+3)+8;%车牌宽
hight=BoundingBox((l-1)*4+4)+2;%车牌高
rato=width/hight;%计算车牌长宽比
ifrato>2&rato<4%这块儿也需要根据具体情况更改一下,如3-6啊什么的
break;
end
end
sbw1=bw2(startrow:
startrow+hight,startcol:
startcol+width-1);%获取车牌二值子图
subcol1=Sgray(startrow:
startrow+hight,startcol:
startcol+width-1);%获取车牌灰度子图
figure,subplot(2,1,1),imshow(subcol1);title('车牌灰度子图');%输出灰度图
subplot(2,1,2),imshow(sbw1);title('车牌二值子图');%输出车牌的二值图
%Step6计算车牌水平投影,并对水平投影进行峰谷分析
histcol1=sum(sbw1);%计算垂直投影
histrow=sum(sbw1');%计算水平投影
figure,subplot(2,1,1),bar(histcol1);title('垂直投影(含边框)');%输出垂直投影
subplot(2,1,2),bar(histrow);title('水平投影(含边框)');%输出水平投影
figure,subplot(2,1,1),bar(histrow);title('水平投影(含边框)');%输出水平投影
subplot(2,1,2),imshow(sbw1);title('车牌二值子图');%输出二值图
%对水平投影进行峰谷分析
meanrow=mean(histrow);%求水平投影的平均值
minrow=min(histrow);%求水平投影的最小值
levelrow=(meanrow+minrow)/2;%求水平投影的平均值
count1=0;
l=1;
fork=1:
hight
ifhistrow(k)<=levelrow
count1=count1+1;
else
ifcount1>=1
markrow(l)=k;%上升点
markrow1(l)=count1;%谷宽度(下降点至下一个上升点)
l=l+1;
end
count1=0;
end
end
markrow2=diff(markrow);%峰距离(上升点至下一个上升点)
[m1,n1]=size(markrow2);
n1=n1+1;
markrow(l)=hight;
markrow1(l)=count1;
markrow2(n1)=markrow(l)-markrow(l-1);
l=0;
fork=1:
n1
markrow3(k)=markrow(k+1)-markrow1(k+1);%下降点
markrow4(k)=markrow3(k)-markrow(k);%峰宽度(上升点至下降点)
markrow5(k)=markrow3(k)-double(uint16(markrow4(k)/2));%峰中心位置
end
%Step7计算车牌旋转角度
%
(1)在上升点至下降点找第一个为1的点
[m2,n2]=size(sbw1);%sbw1的图像大小
[m1,n1]=size(markrow4);%markrow4的大小
maxw=max(markrow4);%最大宽度为字符
ifmarkrow4
(1)~=maxw%检测上边
ysite=1;
k1=1;
forl=1:
n2
fork=1:
markrow3(ysite)%从顶边至第一个峰下降点扫描
ifsbw1(k,l)==1
xdata(k1)=l;
ydata(k1)=k;
k1=k1+1;
break;
end
end
end
else%检测下边
ysite=n1;
ifmarkrow4(n1)==0
ifmarkrow4(n1-1)==maxw
ysite=0;%无下边
else
ysite=n1-1;
end
end
ifysite~=0
k1=1;
forl=1:
n2
k=m2;
whilek>=markrow(ysite)%从底边至最后一个峰的上升点扫描
ifsbw1(k,l)==1
xdata(k1)=l;
ydata(k1)=k;
k1=k1+1;
break;
end
k=k-1;
end
end
end
end
%
(2)线性拟合,计算与x夹角
fresult=fit(xdata',ydata','poly1');%poly1Y=p1*x+p2
p1=fresult.p1;
angle=atan(fresult.p1)*180/pi;%弧度换为度,360/2pi,pi=3.14
%(3)旋转车牌图象
subcol=imrotate(subcol1,angle,'bilinear','crop');%旋转车牌图象
sbw=imrotate(sbw1,angle,'bilinear','crop');%旋转图像
figure,subplot(2,1,1),imshow(subcol);title('车牌灰度子图');%输出车牌旋转后的灰度图像标题显示车牌灰度子图
subplot(2,1,2),imshow(sbw);title('');%输出车牌旋转后的灰度图像
title(['车牌旋转角:
',num2str(angle),'度'],'Color','r');%显示车牌的旋转角度
%Step8旋转车牌后重新计算车牌水平投影,去掉车牌水平边框,获取字符高度
histcol1=sum(sbw);%计算垂直投影
histrow=sum(sbw');%计算水平投影
figure,subplot(2,1,1),bar(histcol1);title('垂直投影(旋转后)');
subplot(2,1,2),bar(histrow);title('水平投影(旋转后)');
figure,subplot(2,1,1),bar(histrow);title('水平投影(旋转后)');
subplot(2,1,2),imshow(sbw);title('车牌二值子图(旋转后)');
%去水平(上下)边框,获取字符高度
maxhight=max(markrow2);
findc=find(markrow2==maxhight);
rowtop=markrow(findc);
rowbot=markrow(findc+1)-markrow1(findc+1);
sbw2=sbw(rowtop:
rowbot,:
);%子图为(rowbot-rowtop+1)行
maxhight=rowbot-rowtop+1;%字符高度(rowbot-rowtop+1)
%S
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 车牌 识别 matlab 程序 详细 注释 使用 注意