奥数整除问题.docx
- 文档编号:28680211
- 上传时间:2023-07-19
- 格式:DOCX
- 页数:11
- 大小:18.89KB
奥数整除问题.docx
《奥数整除问题.docx》由会员分享,可在线阅读,更多相关《奥数整除问题.docx(11页珍藏版)》请在冰豆网上搜索。
奥数整除问题
奥数整除问题
奥数整除问题
整除
求1~1000能被2,3,5中至少一个整除的数的个数。
解答:
1~1000中能被2整除的数有[1000÷2]=500个;能被3整除的数有[1000÷3]=333个;能被5整除的数有[1000÷5]=200个。
若得500+333+200=1033>1000,原因是计算有重复,比如12在被2整除与被3整除的数中都计算了,也就是被2×3=6整除的数计重复了,同理2×5=10,3×5=15也被重复计数了,应当减去。
但是被2×3×5=30整除的数又被减重复了,需要找回。
可用容斥原理求得
[1000÷2]+[1000÷3]+[1000÷5]-([1000÷6]+[1000÷10]+[1000÷15])+[1000÷30]
=500+333+200-(166+100+66)+33=734(个)
我们知道,2、4、6、8、10、……都是能被2整除的整数.如果在这些数之间作和运算或差运算:
2+4=6,4+6=10,6+8=14,
2+6=8,4+8=12,6+10=16,
2+8=10,4+10=14,…………
2+10=12,…………
…………
2+4+6=12,
2+4+6+8=20,
2+4+6+8+10=30,
…………
4-2=2,6-4=2,8-6=2,
6-2=4,8-4=4,10-6=4,
8-2=6,10-4=6,…………
10-2=8,
…………
我们发现,它们之间的和或差也都能被2整除.因此,我们有理由猜想:
能被2整除的数之间的和或差也能被2整除.
我们还知道,3、6、9、12、15、……都是能被3整除的数.如果在这些数之间作和运算或者差运算:
3+6=9,6+9=15,9+12=21,
3+9=12,6+12=18,9+15=24,
3+12=15,6+15=21,………
3+15=18,…………
………
3+6+9=18,
3+6+9+12=30,
3+6+9+12+18=48,
………
6-3=3,9-6=3,12-9=3,
9-3=6,12-6=6,15-9=6,
12-3=9,15-6=9,………
15-3=12,………
………
这些运算的结果也都能被3整除.因此,我们又有理由猜想:
能被3整除的数之间的和或差也能被3整除.
有了前面的两点猜想,我们似乎可以作更大胆的猜想:
如果有一些数能被某个数整除,那么,这些数之间的和或差也一定能被某个数整除.
【规律】
如果有整数A、B、C、……都能被整数m整除,那么,就有A±B±C±……
的结果也能被m整除.
事实上,整数A、B、C、……都能被整数m整除,那么,这些整数就可以分别写成m的倍数形式:
A=a?
m,B=b?
m,C=c?
m,……
(其中a、b、c仍为整数).这样
A±B±C±……
=a?
m±b?
m±c?
m±……
=(a±b±c±……)?
m.
显然,后面的结果是m的倍数,能被m整除.这就说明了原式
A±B±C±……
也能被m整除.猜想是正确的.
【练习】
运用上面的规律你能判断出下面哪些算式的得数能被2、3或5整除.
(1)123456789×1991+987654321;
(2)987654321×1992-123456789;
(3)2+4+6+……+1998+20xx;
(4)5000-4998+4996-4994+……+4-2;
(5)1×2+3×4+5×6+……+99×100;
(6)1×2×3+4×5×6+7×8×9+……+97×98×99;
(7)1×2×3×4×5+6×7×8×9×10+11×12×13×14×15+……+96×97×98×99×100;
(8)19921+19922+19923+……+19922000.
数的整除性规律
【能被2或5整除的数的特征】一个数的末位能被2或5整除,这个数就能被2或5整除
【能被3或9整除的数的特征】一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。
例如,1248621各位上的数字之和是1+2+4+8+6+2+1=24
3|24,则3|1248621。
又如,372681各位上的数字之和是3+7+2+6+8+1=27
9|27,则9|372681。
【能被4或25整除的数的特征】一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。
例如,
173824的末两位数为24,4|24,则4|173824。
43586775的末两位数为75,25|75,则25|43586775。
【能被8或125整除的数的特征】一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。
例如,
32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。
3569824的末三位数为824,8|824,则8|3569824。
214813750的末三位数为750,125|750,则125|214813750。
【能被7、11、13整除的数的特征】一个数,当且仅当它的末三位数字所表示的`数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。
例如,75523的末三位数为523,末三位以前的数字所表示的数是75,523-75=448,448÷7=64,即7|448,则7|75523。
又如,1095874的末三位数为874,末三位以前的数字所表示的数是1095,1095-874=221,221÷13=17,即13|221,则13|1095874。
再如,868967的末三位数为967,末三位以前的数字所表示的数是868,967-868=99,99÷11=9,即11|99,则11|868967。
此外,能被11整除的数的特征,还可以这样叙述:
一个数,当且仅当它的奇数位上数字之和,与偶数位上数字之和的差(大减小)能被11整除时,则这个数便能被11整除。
例如,4239235的奇数位上的数字之和为4+3+2+5=14,偶数位上数字之和为2+9+3=14,二者之差为14-14=0,0÷11=0,即11|0,则11|4239235。
从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是()号。
考点:
整除问题.
分析:
第一次报数留下的同学,最初编号都是11的倍数;这些留下的继续报数,那么再留下的学生最初编号就是11×11=121的倍数,依次类推即可得出最后留下的学生的最初编号.
解:
第一次报数后留下的同学最初编号都是11倍数;
第二次报数后留下的同学最初编号都是121的倍数;
第三次报数后留下的同学最初编号都是1331的倍数;
所以最后留下的只有一位同学,他的最初编号是1331;
答:
从左边数第一个人的最初编号是1331号.
点评:
根据他们的报数11,得出每次留下的学生的最初编号都是11的倍数,是解决这个问题的关键.
常见的几种数的整除特征
(1)能被2整除的数的特征:
若一个数的未位数字是偶数,则这个数能被2整除.
(2)能被3整除的数的特征:
若一个数的各位数字之和是3的倍数,则这个数能被3整除.
(3)能被4(或25)整除的数的特征:
若一个数的未两位数是4的倍数,则这个数能被4整除.
(4)能被5整除的数的特征:
若一个数的未位数是0或5,则这个数能被5整除.
(5)能被6整除的数的特征:
若一个数既是2的倍数,又是3的倍数,则这个数能被6整除.
(6)能被7整除的数的特征:
若一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7整除,则这个数能被7整除
(7)能被8(或125)整除的数的特征:
若一个数的未三位数是8的倍数,则这个数能被8整除数.
(8)能被9整除的数的特征:
若一个数的各位数字之和是9的倍数,则这个数能被9整除.
(9)能被11整除的数的特征:
其奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。
(10)能被13(或7或11)整除的数的特征:
若一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被13(或7或11)整除,则这个数能被13(或7或11)整除。
如:
六位数是7、11、13的倍数。
课后检测:
1.从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。
2.在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被4,8,9整除?
3.05能被45整除,自然数n最小是多少?
4.从0,1,2,3,4,5,6,7,8,9这10个数字中选出5个不同的数字组成一个五位数,使它能被3,5,7,13整除,这个数最大是多少?
5.三个连续自然数,它们从小到大依次是12、13、14的倍数,这三个连续自然数中(除13外),是13的倍数的最小数是多少?
求最小的自然数,它的各位数字之和等于56,它的末两位数是56,它本身还能被56所整除.
答案与解析:
根据此数的末两位数是56,设所求的数写成100a+56
由于100a+56能被56整除,所以100a是56的倍数
100是4的倍数,所以a能被14整除,所以a应是14的倍数
此数的数字和等于56,后两位为5+6=11
所以a的数字和等于56-11=45
具有数字和45的最小偶数是199998,但这个数不能被7整除
数字和为45的偶数还可以是289998和298998
但前者不能被7除尽,后者能被7整除
所以本题的答数就是29899856.
一、基本概念和知识
1.整除——约数和倍数
例如:
15÷3=5,63÷7=9
一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。
记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作ba。
如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。
例如:
在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。
2.数的整除性质
性质1:
如果a、b都能被c整除,那么它们的和与差也能被c整除。
即:
如果c|a,c|b,那么c|(a±b)。
例如:
如果2|10,2|6,那么2|(10+6),
并且2|(10—6)。
性质2:
如果b与c的积能整除a,那么b与c都能整除a.即:
如果bc|a,那么b|a,c|a。
性质3:
如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。
即:
如果b|a,c|a,且(b,c)=1,那么bc|a。
例如:
如果2|28,7|28,且(2,7)=1,
那么(2×7)|28。
性质4:
如果c能整除b,b能整除a,那么c能整除a。
即:
如果c|b,b|a,那么c|a。
例如:
如果3|9,9|27,那么3|27。
3.数的整除特征
①能被2整除的数的特征:
个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:
一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
②能被5整除的数的特征:
个位是0或5。
③能被3(或9)整除的数的特征:
各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:
末两位数能被4(或25)整除。
例如:
1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为2564,所以1864不能被25整除.
⑤能被8(或125)整除的数的特征:
末三位数能被8(或125)整除。
例如:
29375=29000+375,因为1000是8与125的倍数,所以29000是8与125的倍数.又因为125|375,所以29375能被125整除.但因为8375,所以829375。
⑥能被11整除的数的特征:
这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。
例如:
判断123456789这九位数能否被11整除?
解:
这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为115,所以11123456789。
再例如:
判断13574是否是11的倍数?
解:
这个数的奇数位上数字之和与偶数位上数字和的差是:
(4+5+1)-(7+3)=0.因为0是任何整数的倍数,所以11|0.因此13574是11的倍数。
⑦能被7(11或13)整除的数的特征:
一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。
例如:
判断1059282是否是7的倍数?
解:
把1059282分为1059和282两个数.因为1059-282=777,又7|777,所以7|1059282.因此1059282是7的倍数。
再例如:
判断3546725能否被13整除?
解:
把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.
试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?
如果回答:
“可以”,则只要举出一种排法;如果回答:
“不能”,则需给出说明.
考点:
数的整除特征.
分析:
根据题意,可采用假设的方法进行分析,100个自然数任意的5个数相连,可以分成20个组,使得在任何5个相连的数中,都至少有两个数可被3整除,那么会有40个数是3的倍数,事实上在1至100的自然数中只有33个是3倍数,所以不能.
解答:
假设能够按照题目要求在圆周上排列所述的100个数,
按所排列顺序将它们每5个分为一组,可得20组,
其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3的倍数.
从而一共会有不少于40个数是3的倍数.但事实上在1至100的这100个自然数中只有33个数是3的倍数,
导致矛盾,所以不能.
答:
不能.
点评:
此题主要考查的是在1至100的100个自然数中能被3整除的有多少。
1。
能同时被2、5、7整除的最大五位数的多少?
2。
下面一个19983位数33…3(991个3)□44…4(991个4)中间漏写了一个数字(方框),已知,这个多位数被7整除,那么,中间方框内的数字是多少?
3。
有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4组成,所以这样的两位数的和是多少?
4。
一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是多少?
5。
任取一个四位数乘3456,用A表示其积的个位数字之和,用B表示A的个位数字之和,C表示B是个位数字之和,那么C是多少?
6。
有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是多少?
7。
如果六位数1992□□能被105整除,那么它的最后两位数是多少?
8。
从左向右编号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列,然后留下的同学再报数,第三次报数后,最后留下的同学中,从左边数第一个人的最初编号是多少?
9.173□是四位数字,老师在这个□中先后添入3个数字,所得到的3个四位数,依次可被9、11、6整除,老师添入的3个数字的和是多少?
10。
在1992后面补上三个数字,组成一个七位数,使他们能被2、3、5、11整除,这个七位数最小值是多少?
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整除 问题