六年级数学计算阴影部分的面积一 1.docx
- 文档编号:28664298
- 上传时间:2023-07-19
- 格式:DOCX
- 页数:12
- 大小:1.31MB
六年级数学计算阴影部分的面积一 1.docx
《六年级数学计算阴影部分的面积一 1.docx》由会员分享,可在线阅读,更多相关《六年级数学计算阴影部分的面积一 1.docx(12页珍藏版)》请在冰豆网上搜索。
六年级数学计算阴影部分的面积一1
计算阴影部分的面积或按照要求完成练习
(一)
计算阴影部分的面积或按照要求完成练习
(二)
计算阴影部分的面积或按照要求完成练习(三)
计算阴影部分的面积或按照要求完成练习(四)
计算阴影部分的面积或按照要求完成练习(五)
(单位:
分米)
计算阴影部分的面积或按照要求完成练习(六)
(单位:
分米)
计算阴影部分的面积或按照要求完成练习(七)
1、求出以下图形阴影部分面积
解法:
4÷2=2
阴影部分所在的半圆面积:
2×2×3.14÷2=6.28
4×4-4×4×3.14÷4=3.44
6.28-{3.44-[4×4-(6.28+12.56-阴影)]}=阴影
6.28-{3.44-[阴影-3.36]
2、求出以下图形阴影部分面积
解法:
阴影面积=圆的面积—正方形的面积
圆面积=π*R*R=3.14*16=50.24
正方形面积=4个三角形面积之和(连接对角线就懂了)=4*1/2*4*4=32
所以最终结果就是18.24了~~~
3、两圆相交且正好相交于各自的圆心,半径都是10厘米,求阴影部分面积。
解法:
如图,连接各点,可以证明出上面两个小三角形是全等的(直角和两个直角边相等)于是,他就是一个等边三角形阴影部分的面积就是三分之一的圆的面积,那么用三分之一圆的面积减去三角形的面积就是所求的面积的二分之一,把结果X2即可。
4、如图中,阴影部分的面积是5.7平方厘米,三角形ABC的面积是多少?
解法:
扇形ABC的面积等于1/8的圆,三角形ABC的面积等于1/4半径平方(因为它是一个等腰直角三角形,作AC边上的高,它的高为1/2的半径从而求得三角形的面积);用扇形的面积减去三角形的面积,由此求得半径的平方等于40平方厘米;因而三角形ABC的面积等于10平方厘米。
1/8×3.14×r²-1/4×r²=5.7
解方程得:
r²=40平方厘米
得三角形ABC的面积等于10平方厘米。
5、求出以下图形阴影部分面积
解法:
过c做CE垂直AB,CF垂直BD
CEBF为正方形
叶形阴影面积=扇BFC+扇BEC-CEBF
扇ABD-半圆BCD-半圆BCA=阴影面积(叶形除外)-叶形面积
CEBF=3^2=9
扇BFC=扇BEC=1/4*π*3^2=7.065
扇ABD=1/4*π*6^2=28.26
半圆BCD+半圆BCA=π*3^2=28.26
推出两个阴影的面积相同
叶形面积=7.065*2-9=5.13
阴影面积=5.13*2=10.26
6、如图所示,求a部分阴影的面积
解法:
因C已知(20*20-10平方*3.14)/2=43
用小半圆+半圆+C-正方体=A+D+A+B+C-A-B-C-D=A
(20*20π)/4+{[(20/2)平方]π}/2+43-20平方
=100π+50π+43-400
=150π-357
=471-357
=84
7、求出以下图形阴影部分面积
解法:
1/2(л×1.5×1.5)-(1/2×3×3-1/8×л×3×3),剩下的自己算算
↑↑↑
下面那个半圆的面积三角形的面积那个扇形的面积
8、这个世界并不是掌握在那些嘲笑者的手中,而恰恰掌握在能够经受得住嘲笑与批忍不断往前走的人手中。
9、障碍与失败,是通往成功最稳靠的踏脚石,肯研究、利用它们,便能从失败中培养出成功。
10、在真实的生命里,每桩伟业都由信心开始,并由信心跨出第一步。
。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级数学计算阴影部分的面积一 六年级 数学 计算 阴影 部分 面积