基本单位历史沿革.docx
- 文档编号:2852106
- 上传时间:2022-11-15
- 格式:DOCX
- 页数:15
- 大小:38.88KB
基本单位历史沿革.docx
《基本单位历史沿革.docx》由会员分享,可在线阅读,更多相关《基本单位历史沿革.docx(15页珍藏版)》请在冰豆网上搜索。
基本单位历史沿革
基本单位历史沿革
物理量之间通过各种物理定律和有关的定义彼此建立联系。
人们往往取其中的一些作为基本物理量,以它们的单位作为基本单位,形成配套的单位体系,其他的单位可以由此推出,这就是单位制。
由于历史的原因,世界各国一直通过有各种不同的单位体制,混乱复杂。
不同行业采用的单位也不尽相同,例如:
法国曾通用米-吨-秒制,英美曾通用英尺-磅-秒制,技术领域中采用工程单位制,即米-千克力-秒制,而物理学则习惯于厘米-克-秒(CGS)单位制。
这对经济交往和科技工作都十分不利。
为了便于国际间进行工业技术的交流,1875年在签署米制公约时,规定以米为长度单位,以千克为质量单位,以秒为时间单位。
这就是众所周知的米-千克-秒(MKS)单位制。
几种电磁单位制
电磁学中单位和单位制更为混乱,几经变革,走过了一条曲折的道路。
早在1832年,高斯在他的著名论文《换算成绝对单位的地磁强度》一文中就强调指出:
必须用根据力学中的力的单位进行的绝对测量来代替用磁针进行的地磁测量。
他为此提出了一种以毫米、毫克和秒为基本单位的绝对电磁单位制。
高斯的主张得到了W.韦伯的支持,韦伯把高斯的工作推广到其它电学量。
然而遗憾的是,电磁量实际上可以由两个互个相容的方程系来描述,因为两个库仑定律都可以当作定义性方程:
一个是静电学的库仑定律,一个是静磁学的库仑定律。
于是出现了两种“绝对”电磁学单位。
19世纪50年代初,英国的W.汤姆生(开尔文)也做了类似的工作。
他根据英国力学单位进行了与电信有关的一些电测量。
1861年,英国的布赖特(C.Bright)和克拉克(L.Clark)发表《论电量和电阻标准的形成》一文,倡议建立一种统一的实用单位。
他们的倡议得到了W.汤姆生的支持。
于是这一年英国科学促进会成立了以W.汤姆生为首的六人电标准委员会,其宗旨是统一电阻和电容的标准,建立恰当的实用单位,并确定绝对单位和实用单位的换算关系。
这个委员会主张用厘米-克-秒作为基本单位,于是又形成了两种单位制:
厘米-克-秒静电单位制(CGSE或esu)和厘米-克-秒电磁单位制(CGSM或emu)。
麦克斯韦也是这个委员会的成员。
他对单位的规范和统一非常关心,亲自作了许多实验,提出了不少有益的建议。
例如。
他在1865年写道“至今采用的命名方法缺点很多。
在涉及各个测量时,我们必须说明哪个数是表示静电单位的值还是电磁绝对单位的值。
如果运用到乘法,乘得的结果也必须加以命名,而且还必须牵涉到长度、质量和时间的单位标准,因为有些作者用磅而有些用克,有些用米而有些用毫米作基本单位。
这样繁琐的命名和由此带来错误的危险应该避免”。
在六人电标准委员会的倡议下,英国科学促进会决定采用如下一些实用单位:
电阻用欧姆,1欧姆=10e9厘米-克-秒电磁单位制的电阻单位;电势用伏特,1伏特=10e8厘米-克-秒电磁单位制的电势单位。
1881年巴黎第一届国际电学家大会批准了一方案,并决定再增加电流的实用单位:
安培,规定1伏特电势差加在1欧姆电阻上产生的电流强度为1安培,它等于1/10厘米-克-秒电磁单位制的电流单位。
与此同时,还引入了电量的实用单位——库仑和电容的实用单位——法拉。
这些单位沿用至今。
这样就形成了电磁量中的第三套单位制,即实用单位制。
本来这套实用单位是附属于厘米-克-秒电磁单位制的,取的仍是“绝对”定义。
然而,为了检验的方便,有人主张再为这些实用单位选定一些实物基准。
于是在1893年在芝加哥召开的第四届国际电学家大会上为这些实用单位另行规定了实物基准,并且把这些实用单位分别冠以“国际”词头。
下面引一段当时的决议:
“决议,本届国际电学家大会代表各自政府的委托,正式采用以下单位作为电学计量的法定单位:
“欧姆——以国际欧姆作为电阻单位,它以等于10e9CGS电磁单位电阻的欧姆作为基础,用恒定电流在融冰温度时通过质量为14.4521克,长度为106.3厘米,横截面恒定的水银柱所受到的电阻来代表。
”
“安培——以国际安培作为电流单位,它等于CGS电磁单位的1/10,在实用上取通过硝酸银水溶液在规定条件下以每秒0.001118克的速率使银沉淀的恒定电流来代表已足够精确”。
同时大会还对国际伏特、国际库仑、国际法拉都作了相应的规定。
这样就出现了历史上第一套“国际”单位,这套单位不甚完备,因此提出之初,没有得到普遍承认。
电磁学单位制的变迁经历了一个相当曲折的过程。
除了CGSM单位制,CGSE单位制和实用单位制以外,还有高斯单位制。
高斯单位制在物理学中运用广泛,至今还常见于文献。
乔治MKS制和有理化MKS制
早在1901年,意大利乔治(G.George)就曾提出,如果在长度、质量和时间这三个基本单位之外,再增加一个电学量作为基本单位,就可以建立一种包括力学和整个电磁现象在内的一贯单位制。
他当时建议用米、千克、秒和欧姆,之所以想选取欧姆,是因为电阻可以用性能特别稳定的材料来代表。
经过各国际组织长期讨论,国际计量委员会在1935年接受了乔治的建议,但是否定了他把电阻作为第四个基本量的意见,代之以下列更科学、更合理的方案:
(1)写成有理化形式的方程中的真空磁导率,定义为4л×10e(-7)牛顿/安培e2。
此处牛顿是被引入作为力的米-千克-秒单位制中的新单位。
(2)根据两平行载流导线之间的力规定安培。
由于第二次世界大战的干扰,这一套有理化MKS制直到1948年才开始采用。
基本单位中除了三个力学量外,再增加一个电磁量,这一措施有重大意义。
十九世纪许多科学家主张用力学量单位作为基本单位,反映了他们的机械论观点。
当时人们总认为,一切自然现象(包括电磁现象)最终都应归属于机械运动。
但是,科学的发展打破了传统观念。
基本单位的扩大,反映了观念的更新。
1882-3年,英国的赫维赛(O.Heaviside)首先提出有理化问题,他发现电磁学公式中4л的分布不尽合理。
1891年裴雷(J.Perry)建议,如果取真空磁导率μ0=4л×10e(-7),就可以使电磁学公式得到更简洁的表达式,这就是1935年国际计量委员会作出上述决定的又一历史背景。
在电磁学单位制中磁学量的单位特别复杂,很容易混淆,这主要是因为磁学本身经历了一个概念含混的时期。
最早的库仑定律是建立在磁荷概念之上的,但是实际上正负磁荷并不能象正负电荷那样单独存在。
1900年,国际电学家大会赞同美国电气工程师协会(AIEE)的提案,决定CGSM制磁场强度的单位名称为高斯,这实际上是一场误会。
AIEE原来的提案是把高斯作为磁通密度B的单位,由于翻译成法文时误译为磁场强度,造成了混淆。
当时的CGSM制和高斯单位制中真空磁导率μ0是无量纲的纯数1,所以,真空中的B和H没有什么区别,致使一度B和H都用同一个单位——高斯。
但是,磁场强度H和磁通密度B在本质上毕竟是两个不同的概念。
1900年后,就在科技界中展开了一场关于B和H性质是否相同的讨论,同时也讨论到电位移D和电场强度E的区别问题。
直至1930年7月,国际电工委员会才在广泛讨论的基础上作出决定:
真空磁导率μ0有量纲,B和H性质不同,B和D对应,H和E对应,在CGSM单位制中以高斯作为B的单位,以奥斯特作为H的单位。
国际单位制
第二次世界大战后,出现了进一步加强国际合作的趋势,迫切要求改进计量单位和单位制的统一。
在这以前,多种单位制并存在局面使各国科技人员伤透了胸筋,贻误了许多工作。
1948年第九届国际计量大会要求国际计量委员会在科学技术领域中开展国际征询,并对上述情况进行研究。
在这个基础上,1954年第十届国际计量大会决定将实用单位制扩大为六个基本单位,即米、千克、秒、安培、开尔文和坎德拉,其中开尔文是绝对温度的单位,坎德拉是发光强度的单位。
1960年第十一届国际计量大会决定将上述六个基本单位为基础的单位制命名为国际单位制,并以SI(法文LeSystemInternationalel'Unites的缩写)表示。
1971年第十四届国际计量大会增补了一个基本量和单位,这就是“物质的量”及其单位——摩尔,定义它为:
摩尔是一系统的物质的量,该系统中所包含的基本单元数与0.012千克碳-12的原子数相等。
同时SI单位制中还规定了一系列配套的导出单位和通用的词冠,形成了一套严密、完整、科学的单位制。
SI单位制的提出和完善是国际科技合作的一项重要成果,也是物理学发展的又一标志。
国际单位制比起其他单位制来有许多优点:
一是通用性,适用于任何一个科学技术部门,也适用于商品流通领域和社会日常生活;二是科学性和简明性,构成原则科学明了,采用十进制,换算简便;三是准确性,单位都有严格的定义和精确的基准。
单位制沿革
古代常以人体的一部分作为长度的单位。
例如我国三国时期(公元三世纪初)王肃编的《孔子家语》一书中记载有:
“布指知寸,布手知尺,舒肘知寻。
”两臂伸开长八尺,就是一寻。
还有记载说:
“十尺为丈,人长八尺,故曰丈夫。
”可见,古时量物,寸与指、尺与手、寻与身有一一对应的关系。
西方古代经常使用的长度单位中有所谓的“腕尺”,约合52~53厘米,与从手的中指尖到肘之间的长度有密切关系。
也有用实物作为长度单位依据的。
例如,英制中的英寸来源于三粒圆而干的大麦粒一个接一个排成的长度。
多少年来世界各国通行种类繁多的长度单位,甚至一个国家或地区在不同时期采用不同的长度单位,杂乱无章,极不统一,对商品的流通造成许多麻烦。
所以,随着科学技术的进步,长度单位逐渐趋于统一,这个进程早在几百年前就已经开始了。
1790年法国国民议会通过决议,责成法国科学院研究如何建立长度和质量等基本物理量的基准,为统一计量单位打好基础。
次年,又决定采用通过巴黎的地球子午线的四分之一的千万分之一为长度单位,选取古希腊文中“metron”一词作为这个单位的名称,后来演变为“meter”,中文译成“米突”或“米”。
从1792年开始,法国天文学家用了7年时间,测量通过巴黎的地球子午线,并根据测量结果制成了米的铂质原器,这支米原器一直保存在巴黎档案局里。
法国人开创米制后,由于这一体制比较科学,使用方便,欧洲大陆各国相继采用。
后来又作了测量,发现这一米原器并不正好等于地球子午线的四千万分之一,而是大了0.2毫米。
人们认为,以后测量技术还会不断进步,热必会再发现偏差,与其修改米原器的长度,不如就以这根铂质米原器为基准,从而统一所有的长度计量。
1875年5月20日由法国政府出面,召开了20个国家政府代表会议,正式签置了米制公约,公认米制为国际通用的计量单位。
同时决定成立国际计量委员会和国际计量局。
到1985年10月止,米制公约成员国已有47个。
我国于1977年参加。
国际计量局经过几年的研究,用含铂90%、铱10%的合金精心设计和制成了30根横截面呈X琪的米原器。
这种形状最坚固又最省料,铂铱合金的特点则是膨胀系数极小。
这30根米原器分别跟铂质米原器比对,经过遴选,取其中一根作为国际米原器。
1889年,国际计量委员会批准了这项工作,并且宣布:
1米的长度等于这根截面为X形的铂铱合金尺两端刻线记号间在冰融点温度时的距离。
其余一些米原器都与国际米原器作过比对,后来大多分发给会员国,成为各国的国家基准,以后每隔几十年都要进行周期检定,以确保长度基准的一致性。
然而实际上米原器给出的长度并不一定正好是1米,由于刻线工艺和测量方法等方面的原因,在复现量值时总难免有一定误差,这个误差不小于0.1微米,也就是说,相对误差可达1×10e(-7)。
时间长了,很难保证米原器本身不会发生变化,再加上米原器随时都有被破坏的危险。
所以,随着科学与技术的发展,人们越来越希望把长度的基准建立在更科学、更方便和更可靠的基础上,而不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基本单位 历史沿革